Methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. A human cDNA for MTHFR, 2.2 kb in length, has been expressed and shown to result in a catalytically active enzyme of approximately 70 kDa. Fifteen mutations have been identified in the MTHFR gene: 14 rare mutations associated with severe enzymatic deficiency and 1 common variant associated with a milder deficiency. The common polymorphism has been implicated in three multifactorial diseases: occlusive vascular disease, neural tube defects, and colon cancer. The human gene has been mapped to chromosomal region 1p36.3 while the mouse gene has been localized to distal Chromosome (Chr) 4. Here we report the isolation and characterization of the human and mouse genes for MTHFR. A human genomic clone (17 kb) was found to contain the entire cDNA sequence of 2.2 kb; there were 11 exons ranging in size from 102 bp to 432 bp. Intron sizes ranged from 250 bp to 1.5 kb with one exception of 4.2 kb. The mouse genomic clones (19 kb) start 7 kb 5' exon 1 and extend to the end of the coding sequence. The mouse amino acid sequence is approximately 90% identical to the corresponding human sequence. The exon sizes, locations of intronic boundaries, and intron sizes are also quite similar between the two species. The availability of human genomic clones has been useful in designing primers for exon amplification and mutation detection. The mouse genomic clones will be helpful in designing constructs for gene targeting and generation of mouse models for MTHFR deficiency.
Methylenetetrahydrofolate reductase (MTHFR) reduces 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, the major carbon donor in the remethylation of homocysteine to methionine. Mild MTHFR deficiency, due to a common variant at nucleotide 677, has been reported to alter risk for several disorders including cardiovascular disease, neural tube defects, pregnancy complications, and certain cancers. Little is known about MTHFR regulation, since the complete cDNA and gene sequences have not been determined. In earlier work, we isolated and expressed a 2.2-kb human cDNA comprised of 11 coding exons, and we demonstrated that it encoded an active 70-kDa isoform. However, transcript sizes of approximately 7.5 kb and 9.5 kb and the presence of a second isoform of 77 kDa on Western blots suggested that cDNA sequences were incomplete. In this report, we characterized the complete cDNA and gene structure in human and mouse. Variable 5? and 3? UTR regions were identified, resulting in transcript heterogeneity. The 5? and 3? termini of the MTHFR cDNA were found to overlap with the 5? terminus of a chloride ion channel gene (CLCN-6) and the 3? terminus of an unidentified gene, respectively; this finding has resulted in finer mapping of MTHFR on Chromosome (Chr) 1p36.3. Ribonuclease protection assays identified clusters of transcriptional start sites, suggesting the existence of multiple promoters. MTHFR has several polyadenylation sites creating 3?UTR lengths of 0.2 kb-5.0 kb or 0.6 kb-4.0 kb in human and mouse, respectively. In both species, the previously reported exon 1 was redefined to approximately 3.0 kb in length and shown to be alternatively spliced. An important splice variant contains novel coding sequences; this cDNA was expressed and shown to encode the isozyme of 77 kDa. Our results, which suggest intricate regulation of MTHFR, will facilitate additional regulatory and functional studies of the different isoforms.
GMX1778 and its prodrug GMX1777 represent a new class of cancer drugs that targets nicotinamide phosphoribosyltransferase (NAMPT) as a new strategy to interfere with biosynthesis of the key enzymatic cofactor NAD, which is critical for a number of cell functions, including DNA repair. Using a genome-wide synthetic lethal siRNA screen, we identified the folate pathway-related genes, deoxyuridine triphosphatase and dihydrofolate reductase, the silencing of which sensitized non-small cell lung carcinoma (NSCLC) cells to the cytotoxic effects of GMX. Pemetrexed is an inhibitor of dihydrofolate reductase currently used to treat patients with nonsquamous NSCLC. We found that combining pemetrexed with GMX1777 produced a synergistic therapeutic benefit in A549 and H1299 NSCLC cells in vitro and in a mouse A549 xenograft model of lung cancer. Pemetrexed is known to activate PARPs, thereby accelerating NAD consumption. Genetic or pharmacologic blockade of PARP activity inhibited this effect, impairing cell death by pemetrexed either alone or in combination with GMX1777. Conversely, inhibiting the base excision repair pathway accentuated NAD decline in response to GMX and the cytotoxicity of both agents either alone or in combination. These findings provide a mechanistic rationale for combining GMX1777 with pemetrexed as an effective new therapeutic strategy to treat nonsquamous NSCLC. Cancer Res; 74(21); 5948-54. Ó2014 AACR.
B cell lymphoma 6 (BCL6), a highly regulated transcriptional repressor, is deregulated in several forms of non-Hodgkin lymphoma (NHL), most notably in diffuse large B-cell lymphoma (DLBCL). The activities of BCL6 are dependent on protein−protein interactions with transcriptional co-repressors. To find new therapeutic interventions addressing the needs of patients with DLBCL, we initiated a program to identify BCL6 inhibitors that interfere with co-repressor binding. A virtual screen hit with binding activity in the high micromolar range was optimized by structure-guided methods, resulting in a novel and highly potent inhibitor series. Further optimization resulted in the lead candidate 58 (OICR12694/JNJ-65234637), a BCL6 inhibitor with low nanomolar DLBCL cell growth inhibition and an excellent oral pharmacokinetic profile. Based on its overall favorable preclinical profile, OICR12694 is a highly potent, orally bioavailable candidate for testing BCL6 inhibition in DLBCL and other neoplasms, particularly in combination with other therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.