Background— Mitral valve prolapse (MVP) may present with ventricular arrhythmias and sudden cardiac death (SCD) even in the absence of hemodynamic impairment. The structural basis of ventricular electric instability remains elusive. Methods and Results— The cardiac pathology registry of 650 young adults (≤40 years of age) with SCD was reviewed, and cases with MVP as the only cause of SCD were re-examined. Forty-three patients with MVP (26 females; age range, 19–40 years; median, 32 years) were identified (7% of all SCD, 13% of women). Among 12 cases with available ECG, 10 (83%) had inverted T waves on inferior leads, and all had right bundle-branch block ventricular arrhythmias. A bileaflet involvement was found in 70%. Left ventricular fibrosis was detected at histology at the level of papillary muscles in all patients, and inferobasal wall in 88%. Living patients with MVP with (n=30) and without (control subjects; n=14) complex ventricular arrhythmias underwent a study protocol including contrast-enhanced cardiac magnetic resonance. Patients with either right bundle-branch block type or polymorphic complex ventricular arrhythmias (22 females; age range, 28–43 years; median, 41 years), showed a bileaflet involvement in 70% of cases. Left ventricular late enhancement was identified by contrast-enhanced cardiac magnetic resonance in 93% of patients versus 14% of control subjects ( P <0.001), with a regional distribution overlapping the histopathology findings in SCD cases. Conclusions— MVP is an underestimated cause of arrhythmic SCD, mostly in young adult women. Fibrosis of the papillary muscles and inferobasal left ventricular wall, suggesting a myocardial stretch by the prolapsing leaflet, is the structural hallmark and correlates with ventricular arrhythmias origin. Contrast-enhanced cardiac magnetic resonance may help to identify in vivo this concealed substrate for risk stratification.
The original designation of "Arrhythmogenic right ventricular (dysplasia/) cardiomyopathy"(ARVC) was used by the scientists who first discovered the disease, in the pre-genetic and pre-cardiac magnetic resonance era, to describe a new heart muscle disease predominantly affecting the right ventricle, whose cardinal clinical manifestation was the occurrence of malignant ventricular arrhythmias. Subsequently, autopsy investigations, genotypephenotype correlations studies and the increasing use of contrast-enhancement cardiac magnetic resonance showed that the fibro-fatty replacement of the myocardium represents the distinctive phenotypic feature of the disease that affects the myocardium of both ventricles, with left ventricular involvement which may parallel or exceed the severity of right ventricular involvement. This has led to the new designation of "Arrhythmogenic Cardiomyopathy" (ACM), that represents the evolution of the original term of ARVC. The present International Expert Consensus document proposes an upgrade of the criteria for diagnosis of the entire spectrum of the phenotypic variants of ACM. The proposed "Padua criteria" derive from the diagnostic approach to ACM, which has been developed over 30 years by the multidisciplinary team of basic researchers and clinical cardiologists of the Medical School of the University of Padua. The Padua criteria are a working framework to improve the diagnosis of ACM by introducing new diagnostic criteria regarding tissue characterization findings by contrast-enhanced cardiac magnetic resonance, depolarization/repolarization ECG abnormalities and ventricular arrhythmia features for diagnosis of the left ventricular phenotype. The proposed diagnostic criteria need to be further validated by future clinical studies in large cohorts of patients.
Supplemental Digital Content is available in the text.
Background—The clinical profile and arrhythmic outcome of competitive athletes with isolated nonischemic left ventricular (LV) scar as evidenced by contrast-enhanced cardiac magnetic resonance remain to be elucidated.Methods and Results—We compared 35 athletes (80% men, age: 14–48 years) with ventricular arrhythmias and isolated LV subepicardial/midmyocardial late gadolinium enhancement (LGE) on contrast-enhanced cardiac magnetic resonance (group A) with 38 athletes with ventricular arrhythmias and no LGE (group B) and 40 healthy control athletes (group C). A stria LGE pattern with subepicardial/midmyocardial distribution, mostly involving the lateral LV wall, was found in 27 (77%) of group A versus 0 controls (group C; P<0.001), whereas a spotty pattern of LGE localized at the junction of the right ventricle to the septum was respectively observed in 11 (31%) versus 10 (25%; P=0.52). All athletes with stria pattern showed ventricular arrhythmias with a predominant right bundle branch block morphology, 13 of 27 (48%) showed ECG repolarization abnormalities, and 5 of 27 (19%) showed echocardiographic hypokinesis of the lateral LV wall. The majority of athletes with no or spotty LGE pattern had ventricular arrhythmias with a predominant left bundle branch block morphology and no ECG or echocardiographic abnormalities. During a follow-up of 38±25 months, 6 of 27 (22%) athletes with stria pattern experienced malignant arrhythmic events such as appropriate implantable cardiac defibrillator shock (n=4), sustained ventricular tachycardia (n=1), or sudden death (n=1), compared with none of athletes with no or LGE spotty pattern and controls.Conclusions—Isolated nonischemic LV LGE with a stria pattern may be associated with life-threatening arrhythmias and sudden death in the athlete. Because of its subepicardial/midmyocardial location, LV scar is often not detected by echocardiography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.