A fully reconfigurable, pneumatic bending actuator is fabricated by implementing the concept of modularity to soft robotics. The actuator features independent, removable, fabric inflation modules that are attached to a common flexible but non-inflating plastic spine. The fabric modules are individually fabricated by heat sealing a thermoplastic polyurethane-coated nylon fabric, whereas the spine is manufactured through fused deposition modeling 3D printing; the components can be assembled and dismantled without the aid of any external tools. The replacement of specific modules along the array facilitates the reconfiguration of the actuator's bending trajectory and torque output; likewise, the combination of inflation modules with dissimilar geometries translates to several different trajectories on a single spine and allows the actuator to bend into assorted, unique structures. A detailed description of the actuator's design is thoroughly presented. We explored how reconfiguration of the actuator's modular geometry affected both the steady state and the dynamic characteristics of the actuator. The torque output of the actuator is proportional to the magnitude of the pressure applied. The actuator was excited by sinusoidal and square pressure inputs, and a second-order linear fit was performed. There were no perceived changes in its performance even after 100,000 inflation and deflation cycles.
Indoor navigation technology has enabled the exploitation of mobile robots for transportation of goods/materials in industry facilities/warehouses. Nevertheless, the deployment of a number of mobile robots segregated to individual tasks may limit the advantages of such technology. The achievement of a solution where a mobile robot capability is enhanced by aggregating passive mechanisms (i.e. passive trailers) represents a more cost effective and versatile solution. Therefore, the analysis of safety and performance of such configuration is a step forward toward the full deployment of this kind of systems. With this work, we attempt to contribute to this field by studying of the effects of system uncertainties, disturbances and changing operating conditions on the behavior of such systems. Specifically, we model the dynamics of a mobile robot towing an off-axle trailer with two wheels configurations and then incorporate the movement of the caster wheels in the dynamics model. Such a model would enable the synthesis of robust control schemes to achieve a better tracking capability and consistent performance in real operating scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.