BACKGROUND: Solar water disinfection (SODIS) is a point-of-use water treatment that consists of exposing microbiologically-contaminated water in plastic bottles to sunlight. Replacing bottles with bags can accelerate the SODIS process, reduce the costs of transport and distribution, improve usability and facilitate its promotion, especially in emergencies. This work evaluated the solar disinfection capacity and resistance to deterioration of different polymer bags.
In this work, primidone, a high persistent pharmacological drug typically found in urban wastewaters, was degraded by different ozone combined AOPs using TiO2 P25 and commercial WO3 as photocatalyst. The comparison of processes, kinetics, nature of transformation products, and ecotoxicity of treated water samples, as well as the influence of the water matrix (ultrapure water or a secondary effluent), is presented and discussed. In presence of ozone, primidone is rapidly eliminated, with hydroxyl radicals being the main species involved. TiO2 was the most active catalyst regardless of the water matrix and the type of solar (global or visible) radiation applied. The synergy between ozone and photocatalysis (photocatalytic ozonation) for TOC removal was more evident at low O3 doses. In spite of having a lower band gap than TiO2 P25, WO3 did not bring any beneficial effects compared to TiO2 P25 regarding PRM and TOC removal. Based on the transformation products identified during ozonation and photocatalytic ozonation of primidone (hydroxyprimidone, phenyl-ethyl-malonamide, and 5-ethyldihydropirimidine-4,6(1H,5H)-dione), a degradation pathway is proposed. The application of the different processes resulted in an environmentally safe effluent for Daphnia magna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.