In this review paper, several new approaches about the 3C-SiC growth are been presented. In fact, despite the long research activity on 3C-SiC, no devices with good electrical characteristics have been obtained due to the high defect density and high level of stress. To overcome these problems, two different approaches have been used in the last years. From one side, several compliance substrates have been used to try to reduce both the defects and stress, while from another side, the first bulk growth has been performed to try to improve the quality of this material with respect to the heteroepitaxial one. From all these studies, a new understanding of the material defects has been obtained, as well as regarding all the interactions between defects and several growth parameters. This new knowledge will be the basis to solve the main issue of the 3C-SiC growth and reach the goal to obtain a material with low defects and low stress that would allow for realizing devices with extremely interesting characteristics.
Silicon carbide (SiC) is emerging rapidly in novel photonic applications thanks to its unique photonic properties facilitated by the advances of nanotechnologies such as nanofabrication and nanofilm transfer. This review paper will start with the introduction of exceptional optical properties of silicon carbide. Then, a key structure, i.e., silicon carbide on insulator stack (SiCOI), is discussed which lays solid fundament for tight light confinement and strong light-SiC interaction in high quality factor and low volume optical cavities. As examples, microring resonator, microdisk and photonic crystal cavities are summarized in terms of quality (Q) factor, volume and polytypes. A main challenge for SiC photonic application is complementary metal-oxide-semiconductor (CMOS) compatibility and low-loss material growth. The state-of-the-art SiC with different polytypes and growth methods are reviewed and a roadmap for the loss reduction is predicted for photonic applications. Combining the fact that SiC possesses many different color centers with the SiCOI platform, SiC is also deemed to be a very competitive platform for future quantum photonic integrated circuit applications. Its perspectives and potential impacts are included at the end of this review paper.
Free standing 3C-SiC wafers with a dimeter of 50 mm and a thickness of ca. 0.8 mm have been grown on a regular base using 3C-SiC CVD seed transfer from Si wafers to a poly-SiC-carrier and a sublimation epitaxy configuration. Up to the thickness of almost 1 mm, stable growth conditions of the cubic polytype have been achieved. The high supersaturation was kept stable by the proper design of the hot zone that enables a high axial temperature gradient at the growth interface. The Sirich gas phase was realized by the application of a Tantalum getter that was integrated into the graphitebased growth cell. Furthermore, an adaption of the growth setup allowed the growth of 3C material with a diameter of 95 mm and bulk material up to 3 mm on 25 mm diameter. Computer simulations were used to determine the supersaturation of the growth setup for different source-to-seed distances. The minimum supersaturation necessary for stable growth of cubic SiC was found to be higher 0.1 for seed already containing the required 3C polytype.
Multiscale approaches for the simulation of materials processing are becoming essential to the industrialization of future nanotechnologies, as they allow for a reduction in production costs and an enhancement of devices and applications. Their integration as modules of “digital twins”, i.e., a combined sequence of predictive chemical–physical simulations and trained black-box techniques, should ideally complement the real sequence of processes throughout all development and production stages, starting from the growth of materials, their functional manipulation and finally their integration in nano-devices. To achieve this framework, computational implementations at different space and time scales are necessary, ranging from the atomistic to the macro-scale. In this paper, we propose a general paradigm for the industrially driven computational modeling of materials by deploying a multiscale methodology based on physical–chemical simulations bridging macro, meso and atomic scale. We demonstrate its general applicability by studying two completely different processing examples, i.e., the growth of group IV crystals through physical vapor deposition and their thermal treatment through pulsed laser annealing. We indicate the suitable formalisms, as well as the advantages and critical issues associated with each scale, and show how numerical methods for the solution of the models could be coupled to achieve a complete and effective virtualization of the process. By connecting the process parameters to atomic scale modifications such as lattice defects or faceting, we highlight how a digital twin module can gain intrinsic predictivity far from the pre-assessed training conditions of black-box “Virtual Metrology” techniques.
Sublimation growth of cubic silicon carbide (3C–SiC) with diameters of 50 and 100 mm was performed on freestanding homoepitaxial grown seeds. For both seeds and sublimation grown crystals, two different relaxation axes with varying curvature could be observed with the higher bent axis aligned perpendicular to the original wafer flat. A general reduction in the wafer bow independent of the starting curvature and size of the seeds could be observed. Using the X-ray imaging, we could observe in situ that the bow reduction is linked to the growth of new material and cannot be initiated by heat up or cool down processes alone. Raman spectroscopy of the grown crystals revealed that the observed flattening goes along with a tensing of the seeding layers while the surface of the crystals remains free of a stress gradient. A slight concave bending of lattice planes along the main relaxation axis could be observed by high-resolution XRD rocking curve measurements while for the lower bent axis, no lattice plane bending occurred. Full width half maximum values of the (002) reflection showed values as low as 67 arcseconds proofing the possibility to grow large-area, high-quality 3C–SiC using sublimation growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.