En la gestión de residuos de combustible de las centrales nucleares españolas, está previsto activar los almacenes temporales individualizados (ATI) cuando se alcanza la saturación de la piscina destinada a albergar elementos de combustible nuclear gastado durante el periodo de explotación de la instalación; al finalizar dicho periodo, un ATI puede utilizarse como almacén transitorio a corto o largo plazo hasta que el almacén temporal central (ATC) esté disponible. Los elementos combustibles (EC), gastados y ubicados en la piscina de la central nuclear (CN), se seleccionan para su almacenado en seco en contenedores (cápsulas) atendiendo a una serie de restricciones impuestas a cada ATI por el órgano regulador competente en función de los requerimientos que afectan específicamente a los contenedores utilizados (v.gr. la limitación de la carga térmica o el número de posiciones para elementos combustibles). Las características de estas cápsulas condicionan el tiempo mínimo de enfriamiento del combustible en la piscina de la central nuclear y, por consiguiente, el tiempo necesario para completar el vaciado completo de dicha piscina. En este contexto, presentamos el problema del encapsulamiento en una etapa del combustible nuclear gastado, ofreciendo una formulación y un método de resolución en dos fases. En la primera fase, se utiliza un modelo de Programación lineal entera mixta (MILP-1), cuyo objetivo es minimizar el coste de los contenedores (de diverso tipo) que se requieren para reubicar los elementos disponibles en la piscina de una central nuclear. Para la segunda fase se ha implementado un algoritmo exacto (Algoritmo A1) que, partiendo de una solución de MILP-1, determina asignaciones óptimas de elementos a contenedores regionalizados por limitaciones sobre la carga térmica permitida en cada región. El procedimiento conjunto (MILP-1 más A1) es capaz de resolver óptimamente instancias con 1500 elementos combustibles, 6 tipos de regiones térmicas y 4 tipos de contenedores en tiempos de CPU inferiores a 0.75 segundos, repartidos así: 0.5 segundos para MILP-1 más 0.25 segundos para A1.
The paper assumes that, at the end of the operational period of a Spanish nuclear power plant, an Independent Spent Fuel Storage Installation will be used for long-term storage. Spent fuel assemblies are selected and transferred to casks for dry storage, with a series of imposed restrictions (e.g., limiting the thermal load). In this context, we present a variant of the problem of spent nuclear fuel cask loading in one stage (i.e., the fuel is completely transferred from the spent fuel pool to the casks at once), offering a multi-start metaheuristic of three phases. (1) A mixed integer linear programming (MILP-1) model is used to minimize the cost of the casks required. (2) A deterministic algorithm (A1) assigns the spent fuel assemblies to a specific region of a specific cask based on an MILP-1 solution. (3) Starting from the A1 solutions, a local search algorithm (A2) minimizes the standard deviation of the thermal load among casks. Instances with 1200 fuel assemblies (and six intervals for the decay heat) are optimally solved by MILP-1 plus A1 in less than one second. Additionally, A2 gets a Pearson’s coefficient of variation lower than 0.75% in less than 260s CPU (1000 iterations).
Strategic staff planning in consultancies is a major problem that directly affects the firm's performance and capacity for dealing with projects appropriately. Furthermore, the decisions taken now will have long term consequences, because consultants are highly qualified workers who need very long learning periods to achieve enough expertise. In other words, the size and composition of the future workforce depends on the decisions taken today. It is important to underline that the system anticipates future capacity adjustment in response to forecasted demand requirements; therefore, it is flexible to plan the workforce in different scenarios and time horizons. This paper proposes a decision support system based on a mathematical optimization model for solving strategic staff planning, taking the company's strategies, policies and objectives into account and optimizing both the costs and the staff composition. The tool is tested by applying it in an office belonging to a multinational consulting firm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.