BackgroundThe Mediterranean olive tree (Olea europaea subsp. europaea) was one of the first trees to be domesticated and is currently of major agricultural importance in the Mediterranean region as the source of olive oil. The molecular bases underlying the phenotypic differences among domesticated cultivars, or between domesticated olive trees and their wild relatives, remain poorly understood. Both wild and cultivated olive trees have 46 chromosomes (2n).FindingsA total of 543 Gb of raw DNA sequence from whole genome shotgun sequencing, and a fosmid library containing 155,000 clones from a 1,000+ year-old olive tree (cv. Farga) were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 443 kb, and a total length of 1.31 Gb, which represents 95 % of the estimated genome length (1.38 Gb). In addition, the associated fungus Aureobasidiumpullulans was partially sequenced. Genome annotation, assisted by RNA sequencing from leaf, root, and fruit tissues at various stages, resulted in 56,349 unique protein coding genes, suggesting recent genomic expansion. Genome completeness, as estimated using the CEGMA pipeline, reached 98.79 %.ConclusionsThe assembled draft genome of O. europaea will provide a valuable resource for the study of the evolution and domestication processes of this important tree, and allow determination of the genetic bases of key phenotypic traits. Moreover, it will enhance breeding programs and the formation of new varieties.
The dynamics and evolution of a coastal sandy system over the last 142 years were analyzed using geomatics techniques (historical cartography, photogrammetry, topography, and terrestrial laser scanning (TLS)). The continuous beach-dune system is a very active confining sand barrier closing an estuarine system where damage is suffered by coastal infrastructures and houses. The techniques used and documentary sources involved historical cartography, digitalizing the 5-m-level curve on the maps of 1875, 1908, 1920, 1950, and 1985; photogrammetric flights of 1985, 1988, and 2001 without calibration certificates, digitalizing only the upper part of the sandy front; photogrammetric flights of 2005, 2007, 2010, and 2014, using photogrammetric restitution of the 5-m-level curve; topo-bathymetric profiles made monthly between 1988 and 1993 using a total station; a terrestrial laser scanner (TLS) since 2011 by means of two annual measurements; and the meteorological data for the period of 1985-2017. The retreat of the sandy complex was caused by winter storms with large waves and swells higher than 6 m, coinciding with periods demonstrating a high tidal range of over 100 and periods with a large number of strong storms. The retreat was 8 m between December 2013 and March 2014. The overall change of the coastline between 1875 and 2017 was approximately 415 m of retreat at Somo Beach. The erosive processes on the foredune involved the outcrop of the rock cliff in 1999 and 2014, which became a continuous rocky cliff without sands. To know the recent coastal evolution and its consequences on the human environment, the combined geomatic techniques and future TLS data series may lead to the improvement in the knowledge of shoreline changes in the context of sea level and global changes.
The current interest in ice caves requires that their varied manifestations be known as accurately as possible in view of their responses to a global change and also to their great potential as paleoenvironmental witnesses. This phenomenon has been known about for a long time but is still scarcely studied from the point of view of its cryological values and the evolution and distribution of many of their morphologies. For this, the development of cryomorphological topographies from traditional techniques to geodetic surveys with different tools, including terrestrial laser scanning, is one of the most current ways to characterize and quantify this type of cryospheric phenomena. It represents a new kind of periglacial cartography whose use is feasible in spite of the difficulties these environments present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.