Nitrogen (N) is an essential nutrient for plant growth and development and is especially important in the production of high quality leafy green vegetables. In this experiment, leaf N concentration, chlorophyll concentration (Chl) and weight above fresh matter (AFM) of romaine lettuce (Lactuca sativa L. var. longifolia) were estimated by correlations between in situ SPAD and atLEAF readings. Lettuce was grown in high tunnels during 42 days and was irrigated at five nitrogen levels: 0, 4, 8, 12 and 16 mEq·L-1 of NO3-, based on the Steiner nutrient solution. The N concentration, Chl concentration and AFM were determined in the laboratory, while SPAD and atLEAF readings were measured in situ weekly. SPAD readings had high, positive and significant linear correlations with N (R2 = 0.90), Chl (R2 = 0.97) and AFM (R2 = 0.98); atLEAF readings had a similar linear correlation with N (R2 = 0.91), Chl (R2 = 0.92) and AFM (R2 = 0.97). Besides, SPAD and atLEAF readings had high, positive, and significant linear correlation (R2 = 0.96). Thus, SPAD and atLEAF meters can be used to non-destructively and accurately estimate the N status of lettuce, in a reliable and quick manner during the crop production cycle. In addition, atLEAF is currently more affordable than SPAD.
*********
In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue.
*********
Phosphite (H 2 PO 3 -; Phi) has been shown to increase fruit quality and activate plant defense mechanisms in plants when provided in a nutrient state with sufficient phosphorous. In this study, five solutions containing different percentages of Phi (0, 20, 30, 40 and 50%) in Steiner's solution were evaluated during the flowering and fructification stages; the Steiner' s nutrient solution was kept al 50% during the flowering stage and at 75% from the beginning of the fructification stage on. The objective was to determine the effects of phosphite on total P concentration in leaves, yield, pH, electrical conductivity (EC), anthocyanin concentration, and fruit size of strawberries (cv. Festival). The experiments were performed in a tunnel-type greenhouse using drip irrigation and volcanic rock (volcanic gravel) as substrate. In the fruit development phase, the concentration of P in the leaves was proportional to the level of Phi used. Although no significant differences were observed when compared to the control, the addition of 20% Phi slightly improved yield and fruit size. The highest pH, EC and anthocyanin concentration were identified in the fruit of plants treated with 30% Phi. Our findings suggest that supplying Phi at 30% or less in the nutrient solution does not significantly affect yield but does affect fruit quality and activates plant defense mechanisms by producing a higher concentration of anthocyanins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.