We present gravitational-arc tomography of the cool-warm enriched circumgalactic medium (CGM) of an isolated galaxy (“G1”) at z ≈ 0.77. Combining VLT/MUSE adaptive-optics and Magellan/MagE echelle spectroscopy we obtain partially-resolved kinematics of Mg ii in absorption and [O ii] in emission. The unique arc configuration allows us to probe 42 spatially independent arc positions transverse to G1, plus 4 positions in front of it. The transverse positions cover G1’s minor and major axes at impact parameters of ≈10 − 30 kpc and ≈60 kpc, respectively. We observe a direct kinematic connection between the cool-warm enriched CGM (traced by Mg ii) and the interstellar medium (traced by [O ii]). This provides strong evidence for the existence of an extended disc that co-rotates with the galaxy out to tens of kiloparsecs. The Mg ii velocity dispersion (σ ≈ 30 − 100 km s−1, depending on position) is of the same order as the modeled galaxy rotational velocity (vrot ≈ 80 km s−1), providing evidence for the presence of a turbulent and pressure-supported CGM component. We regard the absorption to be modulated by a galactic-scale outflow, as it offers a natural scenario for the observed line-of-sight dispersion and asymmetric profiles observed against both the arcs and the galaxy. An extended enriched co-rotating disc together with the signatures of a galactic outflow, are telltale signs of metal recycling in the z ∼ 1 CGM.
Star-forming galaxies (SFGs) with stellar masses below 1010 M⊙ make up the bulk of the galaxy population at z > 2. The properties of the cold gas in these galaxies can only be probed in very deep observations or by targeting strongly lensed galaxies. Here we report the results of a pilot survey using the Atacama Compact Array of molecular gas in the most strongly magnified galaxies selected as giant arcs in optical data. The selection in rest-frame ultraviolet (UV) wavelengths ensures that sources are regular SFGs, without a priori indications of intense dusty starburst activity. We conducted Band 4 and Band 7 observations to detect mid-J CO, [C I] and thermal continuum as molecular gas tracers from four strongly lensed systems at z ≈ 2 − 3: our targets are SGAS J1226651.3+215220 (A and B), SGAS J003341.5+024217 and the Sunburst Arc. The measured molecular mass was then projected onto the source plane with detailed lens models developed from high resolution Hubble Space Telescope observations. Multiwavelength photometry was then used to obtain the intrinsic stellar mass and star formation rate via spectral energy distribution modeling. In only one of the sources are the three tracers robustly detected, while in the others they are either undetected or detected in continuum only. The implied molecular gass masses range from 4 × 109 M⊙ in the detected source to an upper limit of ≲109 M⊙ in the most magnified source. The inferred gas fraction and gas depletion timescale are found to lie approximately 0.5–1.0 dex below the established scaling relations based on previous studies of unlensed massive galaxies, but in relative agreement with existing literature about UV-bright lensed galaxies at these high redshifts. Our results indicate that the cold gas content of intermediate to low mass galaxies should not be extrapolated from the trends seen in more massive high-z galaxies. The apparent gas deficit is robust against biases in the stellar mass or star formation rate. However, we find that in this mass-metallicity range, the molecular gas mass measurements are severely limited by uncertainties in the current tracer-to-gas calibrations.
Context. The 6.4 keV Fe Kα emission line is a ubiquitous feature in X-ray spectra of active galactic nuclei (AGN), and its properties track the interaction between the variable primary X-ray continuum and the surrounding structure from which it arises. Aims. We clarify the nature and origin of the narrow Fe Kα emission using X-ray spectral, timing, and imaging constraints, plus possible correlations to AGN and host galaxy properties, for 38 bright nearby AGN (z < 0.5) from the Burst Alert Telescope AGN Spectroscopic Survey. Methods. Modeling Chandra and XMM-Newton spectra, we computed line full-width half-maxima (FWHMs) and constructed Fe Kα line and 2-10 keV continuum light curves. The FWHM provides one estimate of the Fe Kα emitting region size, R FeKα , assuming virial motion. A second estimate comes from comparing the degree of correlation between the variability of the continuum and line-only light curves, compared to simulated light curves. Finally, we extracted Chandra radial profiles to place upper limits on R FeKα . Results. For 90% (21/24) of AGN with FWHM measurements, R FeKα is smaller than the fiducial dust sublimation radius, R sub . From timing analysis, 37 and 18 AGN show significant continuum and Fe Kα variability, respectively. Despite a wide range of variability properties, the constraints on the Fe Kα photon reprocessor size independently confirm that R FeKα is smaller than R sub in 83% of AGN. Finally, the imaging analysis yields loose upper limits for all but two sources; notably, the Circinus Galaxy and NGC 1068 show significant but subdominant extended Fe Kα emission out to ∼100 and ∼800 pc, respectively. Conclusions. Based on independent constraints, we conclude that the majority of the narrow Fe Kα emission in typical AGN predominantly arises from regions smaller than and presumably inside R sub , and thus it is associated either with the outer broad line region or outer accretion disk. However, the large diversity of continuum and narrow Fe Kα variability properties are not easily accommodated by a universal scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.