More than one million prostate biopsies are performed in the United States every year. A failure to find cancer is not definitive in a significant percentage of patients due to the presence of equivocal structures or continuing clinical suspicion. We have identified gene expression changes in stroma that can detect tumor nearby. We compared gene expression profiles of 13 biopsies containing stroma near tumor and 15 biopsies from volunteers without prostate cancer. About 3,800 significant expression changes were found and thereafter filtered using independent expression profiles to eliminate possible age-related genes and genes expressed at detectable levels in tumor cells. A stroma-specific classifier for nearby tumor was constructed on the basis of 114 candidate genes and tested on 364 independent samples including 243 tumor-bearing samples and 121 nontumor samples (normal biopsies, normal autopsies, remote stroma, as well as stroma within a few millimeters of tumor). The classifier predicted the tumor status of patients using tumor-free samples with an average accuracy of 97% (sensitivity ¼ 98% and specificity ¼ 88%) whereas classifiers trained with sets of 100 randomly generated genes had no diagnostic value. These results indicate that the prostate cancer microenvironment exhibits reproducible changes useful for categorizing the presence of tumor in patients when a prostate sample is derived from near the tumor but does not contain any recognizable tumor. Cancer Res; 71(7); 2476-87. Ó2011 AACR.
In prostate cancer, race/ethnicity is the highest risk factor after adjusting for age. African Americans have more aggressive tumors at every clinical stage of the disease, resulting in poorer prognosis and increased mortality. A major barrier to identifying crucial gene activity differences is heterogeneity, including tissue composition variation intrinsic to the histology of prostate cancer. We hypothesized differences in gene expression in specific tissue types would reveal mechanisms involved in the racial disparities of prostate cancer. We examined seventeen pairs of arrays for African Americans and Caucasians that were formed by closely matching the samples based on the known tissue type composition of the tumors. Using pair wise T-test we found significantly altered gene expression between African Americans and Caucasians. Independently, we performed multiple linear regression analyses to associate gene expression with race considering variation in percent tumor and stroma tissue. The majority of differentially expressed genes were associated with tumor-adjacent stroma rather than tumor tissue. Extracellular matrix, Integrin family and signaling mediators of the epithelial-to-mesenchymal transition pathways were all down regulated in stroma of African Americans. Using MetaCore (GeneGo Inc.) analysis, we observed that 35% of significant (p < 10-3) pathways identified EMT and 25% identified immune response pathways especially for Interleukins -2, -4, -5, -6, -7, -10, -13, -15 and -22 as the major changes. Our studies reveal that altered immune and EMT processes in tumor-adjacent stroma may be responsible for the aggressive nature of prostate cancer in African Americans.
Over 1 million prostate biopsies are performed in the U.S. every year. A failure to find cancer is not definitive in a significant percentage of patients due to the presence of equivocal structures or continuing clinical suspicion. We have identified gene expression changes in stroma that can detect tumor nearby. We compared gene expression profiles of 13 biopsies containing stroma near tumor and 15 biopsies from volunteers without prostate cancer. More than a thousand significant expression changes were found and thereafter filtered using large numbers of other expression profiles to eliminate possible age-related genes and genes expressed at detectable levels in tumor cells. A stroma-specific classifier was constructed based on 114 candidate genes and tested on 364 independent samples, including 243 tumor-bearing samples and 121 non-tumor samples (normal biopsies, normal autopsies, remote stroma, as well as stroma within a few millimeters of tumor). The classifier predicted the tumor status of patients using tumor-free samples with an average accuracy of 97.2% (sensitivity = 97.9% and specificity = 88.0%) whereas classifiers trained with sets of 100 randomly generated genes had no diagnostic value. These results indicate that the prostate cancer microenvironment exhibits reproducible changes useful for categorizing the presence of tumor in patients when a prostate sample is derived from near the tumor but does not contain any recognizable tumor.
Biomarkers are needed to address overtreatment that occurs for the majority of prostate cancer patients that would not die of the disease but receive radical treatment. A possible barrier to biomarker discovery may be the polyclonal/multifocal nature of prostate tumors as well as cell-type heterogeneity between patient samples. Tumor-adjacent stroma (tumor microenvironment) is less affected by genetic alteration and might therefore yield more consistent biomarkers in response to tumor aggressiveness. To this end we compared Affymetrix gene expression profiles in stroma near tumor and identified a set of 115 probe sets for which the expression levels were significantly correlated with time-to-relapse. We also compared patients that chemically relapsed shortly after prostatectomy (<1 year), and patients that did not relapse in the first four years after prostatectomy. We identified 131 differentially expressed microarray probe sets between these two categories. 19 probe sets (15 genes overlapped between the two gene lists with p<0.0001). We developed a PAM-based classifier by training on samples containing stroma near tumor: 9 rapid relapse patient samples and 9 indolent patient samples. We then tested the classifier on 47 different samples, containing 90% or more stroma. The classifier predicted the risk status of patients with an average accuracy of 87%. This is the first general tumor microenvironment-based prognostic classifier. These results indicate that the prostate cancer microenvironment exhibits reproducible changes useful for predicting outcomes for patients.
Finasteride can induce prostate apoptosis and reduce tissue vascularity by inhibiting epithelial cell adhesion. This evidence supports that finasteride has apoptotic and anti-angiogenic effects against benign and malignant prostate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.