Abstract:The use of Pareto-optimal performance fronts in emerging design methodologies for analog integrated circuits is a keystone to overcome the limitations of traditional design methodologies. However, most techniques to generate the fronts reported so far neglect the effect that the surrounding circuitry (such as the load impedance) has on the Pareto-front, thereby making it only realistic for the context where the front was generated. This strongly limits the use of the Pareto front because of the strong dependence between the key performances of an analog circuit and its surrounding circuitry, but, more importantly, because this circuitry remains unknown until the Pareto-optimal front is being used. Since performance front generation is a costly process, this paper proposes that performance fronts for a new context of use of a given circuit can be obtained from fronts that were previously generated under some different conditions. Towards this goal, a transformation methodology for performance objectives of operational amplifiers has been developed. Experimental results for a folded-cascode and a Miller-compensated operational amplifiers show that this is a promising approach to reuse the fronts in multiple contexts.
The use of performance trade-off fronts, also known as Pareto fronts, in emerging design methodologies for analog integrated circuits is a keystone to overcome the limitations of the traditional top-down methodologies. However, most techniques reported so far to generate the fronts neglect the effect of the surrounding circuitry (such as the output load impedance) on the Pareto-front, thereby making it only valid for the context where the front was generated. This strongly limits its use in hierarchical analog synthesis because of the heavy dependence of key performances on the surrounding circuitry, but, more importantly, because this circuitry remains unknown until the synthesis process. We propose a new technique to generate the trade-off fronts that is independent of the load that the circuit has to drive. This idea is exploited for a Miller operational amplifier, and experimental results show that this is a promising approach to solve the issue.I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.