Emerging hierarchical design methodologies based on the use of Pareto-optimal fronts (PoFs) are promising candidates to reduce the bottleneck in the design of analog circuits. However, little work has been reported about how to transmit the information provided by the PoFs of low hierarchical level blocks through the hierarchy to compose the performance models of higher-level blocks. This composition actually poses several problems such as the dependence of the PoF performances on the surrounding circuitry and the complexity of dealing with multi-dimensional PoFs in order to explore more efficiently the design space. To deal with these problems, this paper proposes new mechanisms to represent and select candidate solutions from multi-dimensional PoFs that are transformed to the changing operating conditions enforced by the surrounding circuitry. These mechanisms are demonstrated with the generation of the performance model of an active filter by composing previously generated PoFs of operational amplifiers.