Contemporary farming practices and rapid industrialization over the last few decades, have raised significant soil and water pollution with extreme toxic effects to humans and ecosystems. The widespread and inefficient use of pesticides, which surpass the soil’s self purification capability, has accelerated soil pollution. In this study, wheat straw biochar was obtained using the traditional pyrolysis technique and its characterization; in addition, the adsorption efficiency of metribuzin was investigated. Biochars’ physical and chemical characteristics were qualified using scanning electron microscopy and Fourier transform infrared spectroscopy. A batch sorption test and liquid chromatography coupled with mass spectrometry were also used to assess the biochar efficiency. SEM and FTIR confirmed the highly reactive surfaces of biochar, establishing efficient biomass conversion in low-oxygen conditions. The adsorption process showed best fit with pseudo second-order kinetic and Langmuir models, suggesting a chemisorption procedure and monolayer-type removal. Regarding its environmental and agricultural application, wheat straw biochar can be advanced as a recommendation solution for further research, which is fundamental for soil rehabilitation and the immobilization of contaminations.
Periodic removal of sediment from aquaculture ponds is practiced to maintain their productivity and animal welfare. The recovery of sediment as a plant fertilizer could alleviate the costs of sediment removal. The objective of this study was to test the effects of a dried sediment, extracted from an aquaculture pond used for common carp cultivation, on the growth and physiology of potted wheat grass and the quality of the juice obtained from wheat grass. The results showed that sediment application did not produce significant morphological changes, although the values for plant height (16.94–19.22 cm), leaf area (19.67–139.21 mm2), and biomass (3.39–4.26 g/plant) were higher in sediment-grown plants. However, at a physiological level, the effect was negative, decreasing photosynthesis (0.82–1.66 μmol CO2 m2s−1), fluorescence ΦPSII (0.737–0.782), and chlorophyll content (1.40–1.83 CCI). The juice yield was reduced in the sediment treatments (46–58 g/100 g), while the quality was improved by increasing the content of phenols (2.55–3.39 µg/mL gallic acid equivalent), flavonoids (1.41–1.85 µg/mL quercetin equivalent), and antioxidant activity (47.99–62.7% inhibition of ;2,2-diphenyl-1-picrylhydrazyl). The positive results obtained in this study can be attributed to the moderate nutrient content of the sediment and a negligible concentration of heavy metals.
Currently, global environmental concerns about heavy metal pollution are driven by rapid urbanization and industrial development. Therefore, a field study was conducted to assess the concentration of heavy metals (Pb, Co, Zn, Ni and Cu) in orchard soils and its transfer to two plum varieties (Stanley and Anna Späth) at Adamachi Farm – Iasi University of Life Sciences (IULS). In addition, heavy metal transfer (MTF), daily metals intake (DIM) and the index of health risk (HRI) were evaluated. The concentration of Pb, Co, Zn, Ni and Cu in soil and plum leaves samples were analyzed using atomic absorption spectrometry after acid digestion with a mixture of HNO3 (65%), HCl (37%) and HClO4 (60%). Metal concentration patterns occurred as follows 130.65>76.6>30.36> 21.69>13.26 mg/kg for Cu, Zn, Ni, Pb and Co in soil samples and 20.16>10.00> 2.10>1.68 mg/kg for Zn, Cu, Ni and Pb in plum leaves, while Co residue was not detected. The maximum heavy metal concentrations were found at the soil surface (0 – 30 cm depth) due to soil organo-mineral content and antifungal treatments. The health risk index predicted (HRI) for adults as well as children was in the sequence Pb > Cu > Ni > Zn, suggesting no health risk with values that did not exceed the safe limit (1). Therefore, it is essential to manage the causes and sources of heavy metal transfer prudently and effectively in order to prevent environmental contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.