The underlying mechanisms of various types of hereditary dystonia, a common movement disorder, are still unknown. Recent findings in a genetic model of a type of paroxysmal dystonia, the dt sz mutant hamster, pointed to striatal dysfunctions. In the present study, immunhistochemical experiments demonstrated a marked decrease in the number and density of parvalbuminimmunoreactive GABAergic interneurons in all striatal subregions of mutant hamsters. To examine the functional relevance of the reduction of these inhibitory interneurons, the effects of the GABA A receptor agonist muscimol on severity of dystonia were examined after microinjections into the striatum and after systemic administrations. Muscimol improved the dystonic syndrome after striatal injections to a similar extent as after systemic treatment, supporting the importance of the deficiency of striatal GABAergic interneurons for the occurrence of the motor disturbances. The disinhibition of striatal GABAergic projection neurons, as suggested by recent extracellular single-unit recordings in dt sz hamsters, should lead to an abnormal neuronal activity in the basal ganglia output nuclei. Indeed, a significantly decreased basal discharge rate of entopeduncular neurons was found in dt sz hamsters. We conclude that a deficit of striatal GABAergic interneurons leads by disinhibition of striatal GABAergic projection neurons to a reduced activity in the entopeduncular nucleus, i.e., to a decreased basal ganglia output. This finding is in line with the current hypothesis about the pathophysiology of hyperkinesias. The results indicate that striatal interneurons deserve attention in basic and clinical research of those movement disorders.
A decreased activity of basal ganglia output neurons is thought to underlie idiopathic dystonias and other hyperkinetic movement disorders. We found recently a reduced spontaneous discharge rate of entopeduncular neurons (internal globus pallidus in primates) in dt(sz) hamsters, an unique model for idiopathic paroxysmal dystonia in which stress-inducible attacks show an age-dependent severity. Otherwise, it has been suggested that an altered discharge pattern may be more important for the occurrence of dystonia than a reduced discharge rate. Based on qualitative and computerized quantitative evaluations of interspike interval histograms and spike trains of extracellularly recorded single neurons, we investigated the spontaneous discharge pattern of GABAergic entopeduncular and nigral neurons in dt(sz) hamsters at different ages. The discharge pattern of entopeduncular neurons was highly irregular and showed an altered burst-like firing in dt(sz) hamsters at the age of the most marked expression of dystonia when compared with age-matched nondystonic controls. In line with a recently reported normalization of discharge rates after age-dependent disappearance of dystonia, we found an almost complete normalization of the discharge pattern of entopeduncular neurons after remission of dystonia in dt(sz) hamsters. Investigations of GABAergic nigral neurons, reported recently to have the same spontaneous discharge rates in dystonic and nondystonic hamsters, did not show an altered firing pattern in dt(sz) hamsters. The present data clearly indicate the fundamental importance of an altered discharge pattern of entopeduncular neurons for the expression of paroxysmal dystonia, and probably also for other dyskinesias, and may explain the improvements obtained by pallidotomy in dystonic patients despite an obviously reduced pallidal output.
Neural transplantation has been investigated experimentally and clinically for the purpose of developing new treatment options for intractable epilepsy. In the present study we assessed the anticonvulsant efficacy and safety of bilateral allotransplantation of genetically engineered striatal GABAergic rat cell lines into the substantia nigra pars reticulata (SNr). Rats with previously-established seizures, induced by amygdala kindling, were used as a model of temporal lobe epilepsy. Three cell lines were transplanted: (1) immortalized GABAergic cells (M213-2O) derived from embryonic rat striatum; (2) M213-2O cells (CL4) transfected with human GAD67 cDNA to obtain higher GABA synthesis than the parent cell line; and (3) control cells (121-1I), also derived from embryonic rat striatum, but which did not show GAD expression. A second control group received injections of medium alone. Transplantation of M213-2O cells into the SNr of kindled rats resulted in significant but transient anticonvulsant effects. Neither control cells nor medium induced anticonvulsant effects. Strong tissue reactions were, however, induced in the host brain of kindled but not of non-kindled rats, and only in animals that received grafts of genetically modified CL4 cells. These tissue reactions included graft rejection, massive infiltration of inflammatory immune cells, and gliosis. The anticonvulsant effect of M213-2O cells emphasizes the feasibility of local manipulations of seizures by intranigral transplantation of GABA-producing cells. On the other hand, the present data suggest that kindling-induced activation of microglia in the SNr can enhance immune reactions to transplanted cells. In this case, under conditions of further immunological stimulation by CL4 cells, transfected with a human cDNA, substantial immune reactions occurred. Thus, it appears that the condition of the host brain and the production of foreign proteins by transplanted cells have to be considered in estimating the risks of rejection of transplants into the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.