In this review, the authors survey the large number of antibacterial and antiviral proteins present in human saliva. Of interest, most of these antibacterial proteins display antiviral activity, typically against specific viral pathogens. The review focuses on one protein that interacts with both bacteria and viruses-gp340, originally referred to as salivary agglutinin. In the oral cavity, soluble gp340 binds to and aggregates a variety of bacteria, and this is thought to increase bacterial clearance from the mouth. However, when bound to the tooth surface, gp340 promotes bacterial adherence. In the oral cavity, most gp340 is found soluble in saliva and can function as a specific inhibitor of infectivity of HIV-1 and influenza A. In contrast, in the female reproductive track, most gp340 is bound to the cell surface, where it can promote HIV-1 infection.
Using a yeast two-hybrid screen, we identified human nucleosome assembly protein 1 (hNAP-1) as a protein interacting with the activation domain of the transcriptional activator encoded by papillomaviruses (PVs), the E2 protein. We show that the interaction between E2 and hNAP-1 is direct and not merely mediated by the transcriptional coactivator p300, which is bound by both proteins. Coexpression of hNAP-1 strongly enhances activation by E2, indicating a functional interaction as well. E2 binds to at least two separate domains within hNAP-1, one within the C terminus and an internal domain. The binding of E2 to hNAP-1 is necessary for cooperativity between the factors. Moreover, the N-terminal 91 amino acids are crucial for the transcriptional activity of hNAP-1, since deletion mutants lacking this N-terminal portion fail to cooperate with E2. We provide evidence that hNAP-1, E2, and p300 can form a ternary complex efficient in the activation of transcription. We also show that p53 directly interacts with hNAP-1, indicating that transcriptional activators in addition to PV E2 interact with hNAP-1. These results suggest that the binding of sequence-specific DNA binding proteins to hNAP-1 may be an important step contributing to the activation of transcription.
Phylogenetic analysis of novel dolphin (Tursiops truncatus) papillomavirus sequences, TtPV1, -2, and -3, indicates that the early and late protein coding regions of their genomes differ in evolutionary history. Sliding window bootscan analysis showed a significant a change in phylogenetic clustering, in which the grouped sequences of TtPV1 and -3 move from a cluster with the Phocoena spinipinnis PsPV1 in the early region to a cluster with TtPV2 in the late region. This provides indications for a possible recombination event near the end of E2/beginning of L2. A second possible recombination site could be located near the end of L1, in the upstream regulatory region. Selection analysis by using maximum likelihood models of codon substitutions ruled out the possibility of intense selective pressure, acting asymmetrically on the viral genomes, as an alternative explanation for the observed difference in evolutionary history between the early and late genomic regions of these cetacean papillomaviruses.
A novel papillomavirus (PV) was isolated from a genital condyloma of a free-ranging bottlenose dolphin inhabiting the coastal waters of Charleston Harbor, SC, USA: Tursiops truncatus papillomavirus type 2 (TtPV2). This novel virus represents the first isolated North American cetacean PV and the first American bottlenose dolphin PV. After the viral genome was cloned, sequenced and characterized genetically, phylogenetic analyses revealed that TtPV2 is most similar to the only published cetacean PV isolated and characterized thus far, Phocoena spinipinnis PV type 1 (PsPV1). A striking feature of the genome of TtPV2, as well as that of PsPV1, is the lack of an E7 open reading frame, which typically encodes one of the oncogenic proteins believed to be responsible for malignant transformation in the high-risk mucosotropic human papillomaviruses (HPVs). TtPV2 E6 contains a PDZ-binding motif that has been shown to be involved in transformation in the case of high-risk genital HPVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.