Validation testing is a necessary step for inertial measurement unit (IMU) motion analysis for research and clinical use. Optical tracking systems utilize marker models which must be precise in measurement and mitigate skin artifacts. Prosthesis wearers present challenges to optical tracking marker model choice. Seven participants were recruited and underwent simultaneous motion capture from two marker sets; Plug in Gait (PiG) and the Strathclyde Cluster Model (SCM). Variability of joint kinematics within and between subjects was evaluated. Variability was higher for PiG than SCM for all parameters. The within-subjects variability as reported by the average standard deviation (SD), was below 5.6° for all rotations of the hip on the prosthesis side for all participants for both methods, with an average of 2.1° for PiG and 2.5° for SCM. Statistically significant differences in joint parameters caused by a change in the protocol were evident in the sagittal plane (p < 0.05) on the amputated side. Trans-tibial gait analysis was best achieved by use of the SCM. The SCM protocol appeared to provide kinematic measurements with a smaller variability than that of the PiG. Validation studies for prosthesis wearer populations must reconsider the marker protocol for gold standard comparisons with IMUs.
Background: A validity and reliability assessment of inertial measurement unit (IMU)-derived joint angular kinematics during walking is a necessary step for motion analysis in the lower extremity prosthesis user population. This study aimed to assess the accuracy and reliability of an inertial measurement unit (IMU) system compared to an optical motion capture (OMC) system in transtibial prosthesis (TTP) users. Methods: Thirty TTP users were recruited and underwent simultaneous motion capture from IMU and OMC systems during walking. Reliability and validity were assessed using intra- and inter-subject variability with standard deviation (S.D.), average S.D., and intraclass correlation coefficient (ICC). Results: The intra-subject S.D. for all rotations of the lower limb joints were less than 1° for both systems. The IMU system had a lower mean S.D. (o), as seen in inter-subject variability. The ICC revealed good to excellent agreement between the two systems for all sagittal kinematic parameters. Conclusion: All joint angular kinematic comparisons supported the IMU system’s results as comparable to OMC. The IMU was capable of precise sagittal plane motion data and demonstrated validity and reliability to OMC. These findings evidence that when compared to OMC, an IMU system may serve well in evaluating the gait of lower limb prosthesis users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.