Factor VIII (FVIII), a plasma glycoprotein, is an essential cofactor in the blood coagulation cascade. It is a multidomain protein, known to bind to phosphatidylserine (PS)-containing membranes. Based on X-ray and electron crystallography data, binding of FVIII to PS-containing membranes has been proposed to occur only via the C2 domain. Based on these models, the molecular topology of membrane-bound FVIII can be envisioned as one in which only a small fraction of the protein interacts with the membrane, whereas the majority of the molecule is exposed to an aqueous milieu. We have investigated the topology of the membrane-bound FVIII using biophysical and biochemical techniques. Circular dichroism (CD) and fluorescence studies indicate no significant changes in the secondary and tertiary structure of FVIII associated with the membranes. Acrylamide quenching studies show that the protein is predominantly present on the surface of the membrane, exposed to the aqueous milieu. The light scattering and electron microscopy studies indicate the absence of vesicle aggregation and fusion. Binding studies with antibodies directed against specific epitopes in the A1, A2 and C2 domains suggest that FVIII binds to the membrane primarily via C2 domain including the specific phospholipid binding epitope (2303-2332) and may involve subtle conformational changes in this epitope region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.