The nutritional status of a plant is known to influence its susceptibility to pathogens. In the case of Botrytis cinerea, the role of nitrogen fertilization of various host plants on disease development appears to be variable. This study was carried out to characterize possible variability associated with isolates and inoculum density of B. cinerea in its ability to infect leaf-pruning wounds and to develop stem lesions on tomato plants, as affected by the nitrogen input. Six isolates differing in their aggressiveness to tomato were compared. They all had similar reaction patterns in vitro in response to differential nitrogen levels. In tests on plants grown with contrasted regimes of nitrate fertilization, overall disease severity was lower for all isolates on plants with higher nitrogen inputs, regardless of inoculum concentration. However, differences among isolates were observed in the effect of plant nitrogen nutrition on infection and on lesion expansion. Disease onset was delayed on all plants with higher nitrogen inputs, but the response was greater for isolates with lower aggressiveness on tomato. The highest contrast among isolates was observed with the colonization of stems. The daily rate of stem lesion expansion decreased with increasing nitrogen fertilization levels for the more aggressive isolates, while it increased for the less aggressive isolate. Hypotheses to explain these results are discussed in light of the possible physiological effects of nitrogen fertilization on nutrient availability for the pathogen in the host tissue and of possible production of defence metabolites by the plant.
Background and aims Plant soluble sugars, as main components of primary metabolism, are thought to be implicated in defence against pathogenic fungi. However, the function of sucrose and hexoses remains unclear. This study aimed to identify robust patterns in the dynamics of soluble sugars in sink tissues of tomato plants during the course of infection by the necrotrophic fungus Botrytis cinerea. Distinct roles for glucose and fructose in defence against B. cinerea were hypothesized. Methods We examined sugar contents and defence hormonal markers in tomato stem tissues before and after infection by B. cinerea, in a range of abiotic environments created by various nitrogen and water supplies. Key Results Limited nitrogen or water supplies increased tomato stem susceptibility to B. cinerea. Glucose and fructose contents of tissues surrounding infection sites evolved differently after inoculation. The fructose content never decreased after inoculation with B. cinerea, while that of glucose showed either positive or negative variation, depending on the abiotic environment. An increase in the relative fructose content (defined as the proportion of fructose in the soluble sugar pool) was observed in the absence of glucose accumulation and was associated with lower susceptibility. A lower expression of the salicylic acid marker PR1a, and a lower repression of a jasmonate marker COI1 were associated with reduced susceptibility. Accordingly, COI1 expression was positively correlated with the relative fructose contents 7 d after infection. Conclusions Small variations of fructose content among the sugar pool are unlikely to affect intrinsic pathogen growth. Our results highlight distinct use of host glucose and fructose after infection by B. cinerea and suggest strongly that adjustment of the relative fructose content is required for enhanced plant defence.
Aims. Nitrogen (N) fertilization is known to modify a plant's susceptibility to necrotrophic diseases.However, the effect of N nutrition on defence is not well known. It was hypothesized that not only molecules related to the N metabolism but also main sugars could mediate the effect of plant fertilization on its susceptibility to pathogens.Methods. Two necrotrophic fungi, Botrytis cinerea and Sclerotinia sclerotiorum were inoculated on leaves of lettuce plants grown at 5 nitrate (NO3 -) fertilization levels, in three independent experiments.Variations in plant composition at the time of inoculation were linked to the size of lesions observed after 5-6 days.Results. Both diseases were favoured by high NO3fertilization. However, the highest disease levels were not found in the same experiment for B. cinerea and S. sclerotiorum. Among the components measured, NO3and sucrose (SUC) were positively and negatively correlated to the two diseases in the three experiments, but the relationship between SUC and lesion size was more significant for S. sclerotiorum. Water content, N and total carbon (C) were also significantly correlated to the diseases, but the relationships were less straightforward. The ratios of SUC over total sugars and fructose (FRU) over total sugars fitted, very closely for S. sclerotiorum, a negative and positive exponential relationship respectively with lesion size. Absolute or relative glucose (GLU) levels were not linked to the diseases.Conclusions. Plant metabolic modifications induced by variations of N availability conferred the plant variable defence ability, which seemed, at least for S. sclerotiorum, mainly mediated by variations in host SUC and FRU levels. The generalization of these findings to other species would be of interest.
The influence of nitrogen (N) nutrition on a plant's susceptibility to Botrytis spp. and other pathogens is well documented. However, little is known of possible effects on sporulation of the pathogen on diseased tissue and on the pathogenicity of resulting secondary inoculum. To address this question, sporulation by two strains of Botrytis cinerea was quantified on tomato plants produced under different N irrigation regimes with inputs of NO(3)- at 0.5 to 45 mmol liter(-1) (mM). Sporulation decreased significantly (P < 0.05) with increasing N fertilization up to NO(3)- at 15 to 30 mM. The secondary inoculum was collected and used to inoculate pruning wounds on tomato plants produced under a standard fertilization regime. Pathogenicity of the spores was significantly influenced by the nutritional status of their production substrate. Disease severity was highest with spores produced on plants with very low or very high N fertilization (NO(3)- at 0.5 or 30 mM). It was lowest for inoculum from plants with moderate levels of N fertilization. These results suggest that it may be possible to find an optimum level of N fertilization to reduce the production of secondary inoculum and its pathogenicity to tomato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.