We found a significant correlation between lung cancer in smokers and the expression of a human gene, D40, predominantly expressed in testis and cancers. In an attempt to clone a novel human gene, we screened a cDNA library derived from a human B cell line and obtained a cDNA clone that we refer to as D40. A search for public databases for sequence homologies showed that the D40 gene is identical to AF15q14. D40 mRNA is predominantly expressed in normal testis tissue. However, this gene is also expressed in various human tumour cell lines and primary tumours derived from various organs and tissues, such as lung cancer. We examined the relationship between D40 expression and clinico-pathological characteristics of tumours in primary lung cancer. D40 expression did not significantly correlate with either histological type or pathological tumour stage. However, D40 expression was observed more frequently in poorly differentiated tumours than in well or moderately differentiated ones. Furthermore, the incidence of D40 expression was significantly higher in tumours from patients who smoke than in those from non-smokers. D40/AF15q14 is the first gene in the cancer/testis family for which expression is related to the smoking habits of cancer patients.
Satellite-based remote sensing technologies are utilized extensively to investigate urban thermal environments under rapid urban expansion. Current MODIS data is, however, unable to adequately represent the spatially detailed information because of its relatively coarser spatial resolution, while Landsat data can’t explore temporally the refined analysis due to the low temporal resolution. In order to resolve this situation, we used MODIS and Landsat data to generate “Landsat-like” data by using the flexible spatiotemporal data fusion method (FSDAF), and then studied spatiotemporal variation of land surface temperature (LST) and its driving factors. The results showed that 1) The estimated “Landsat-like” data have high precision; 2) By comparing 2013 and 2016 datasets, LST increases ranging from 1.8°C to 4°C were measurable in areas where the impervious surface area (ISA) increased, while LST decreases ranging from -3.52°C to -0.70°C were detected in areas where ISA decreased; 3) LST has a strongly negative relationship with the Normalized Difference Vegetation Index (NDVI), and a strongly positive relationship with Normalized Difference Built Index (NDBI) in summer; and 4) LST is well correlated with Building density (BD), in a complex conic mode, and LST may increase by 0.460°C to 0.786°C when BD increases by 0.1. Our findings can provide information useful for mitigating undesirable thermal conditions and for long-term urban thermal environmental management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.