Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted.
This study proposes a new concept for quantifying the energy of flowing compressed air, called air power. Air power is defined as the work-producing potential of compressed air, and its definition and general equation are presented. The properties of air power are also discussed. Air power is comprised of two components, transmission power and expansion power, while air temperature and kinetic energy can generally be neglected.
Respiratory sounds reveal important information of the lungs of patients. However, the analysis of lung sounds depends significantly on the medical skills and diagnostic experience of the physicians and is a time-consuming process. The development of an automatic respiratory sound classification system based on machine learning would, therefore, be beneficial. In this study, 705 respiratory sound signals (240 crackles, 260 rhonchi, and 205 normal respiratory sounds) were acquired from 130 patients. We found that similarities between the original and wavelet decomposed signals reflected the frequency of the signals. The Gaussian kernel function was used to evaluate the wavelet signal similarity. We combined the wavelet signal similarity with the relative wavelet energy and wavelet entropy as the feature vector. A 5-fold cross-validation was applied to assess the performance of the system. The artificial neural network model, which was applied, achieved the classification accuracy and classified the respiratory sound signals with an accuracy of 85.43%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.