Accelerometers, gyroscopes and magnetometers in smartphones are often used to recognize human motions. Since it is difficult to distinguish between vertical motions and horizontal motions in the data provided by these built-in sensors, the vertical motion recognition accuracy is relatively low. The emergence of a built-in barometer in smartphones improves the accuracy of motion recognition in the vertical direction. However, there is a lack of quantitative analysis and modelling of the barometer signals, which is the basis of barometer’s application to motion recognition, and a problem of imbalanced data also exists. This work focuses on using the barometers inside smartphones for vertical motion recognition in multi-floor buildings through modelling and feature extraction of pressure signals. A novel double-windows pressure feature extraction method, which adopts two sliding time windows of different length, is proposed to balance recognition accuracy and response time. Then, a random forest classifier correlation rule is further designed to weaken the impact of imbalanced data on recognition accuracy. The results demonstrate that the recognition accuracy can reach 95.05% when pressure features and the improved random forest classifier are adopted. Specifically, the recognition accuracy of the stair and elevator motions is significantly improved with enhanced response time. The proposed approach proves effective and accurate, providing a robust strategy for increasing accuracy of vertical motions.
In recent years, many spatial and temporal satellite image fusion (STIF) methods have been developed to solve the problems of trade-off between spatial and temporal resolution of satellite sensors. This study, for the first time, conducted both scene-level and local-level comparison of five state-of-art STIF methods from four categories over landscapes with various spatial heterogeneity and temporal variation. The five STIF methods include the spatial and temporal adaptive reflectance fusion model (STARFM) and Fit-FC model from the weight function-based category, an unmixing-based data fusion (UBDF) method from the unmixing-based category, the one-pair learning method from the learning-based category, and the Flexible Spatiotemporal DAta Fusion (FSDAF) method from hybrid category. The relationship between the performances of the STIF methods and scene-level and local-level landscape heterogeneity index (LHI) and temporal variation index (TVI) were analyzed. Our results showed that (1) the FSDAF model was most robust regardless of variations in LHI and TVI at both scene level and local level, while it was less computationally efficient than the other models except for one-pair learning; (2) Fit-FC had the highest computing efficiency. It was accurate in predicting reflectance but less accurate than FSDAF and one-pair learning in capturing image structures; (3) One-pair learning had advantages in prediction of large-area land cover change with the capability of preserving image structures. However, it was the least computational efficient model; (4) STARFM was good at predicting phenological change, while it was not suitable for applications of land cover type change; (5) UBDF is not recommended for cases with strong temporal changes or abrupt changes. These findings could provide guidelines for users to select appropriate STIF method for their own applications.
The structure of industrial components is diversified, and extensive efforts have been exerted to improve automation, accuracy, and completeness of feature surfaces extracted from such components. This paper presents a novel method called multistep segmentation and optimization for extracting feature surfaces from industrial components. The method analyzes the normal vector distribution matrix to segment feature points from a 3D point cloud. The point cloud is then divided into different patches by applying the region growing method on the basis of the distance constraint and according to the initial results. Subsequently, each patch is fitted with an implicit expression equation, and the proposed method is combined with the random sample consensus (RANSAC) algorithm and parameter fitting to extract and optimize the feature surface. The proposed method is experimentally validated on three industrial components. The threshold setting in the algorithm is discussed in terms of algorithm principles and model features. Comparisons with state-of-the-art methods indicate that the proposed method for feature surface extraction is feasible and capable of achieving favorable performance and facilitating automation of industrial components.
GNSS-R (Global Navigation Satellite System-Reflectometry) has been demonstrated to be a new and powerful tool to sense soil moisture in recent years. Multi-antenna pattern and single-antenna pattern have been proposed regarding how to receive and process reflected signals. Great efforts have been made concerning ground-based and air-borne observations. Meanwhile, a number of satellite-based missions have also been implemented. For the in-depth study of soil moisture remote sensing by the technique of GNSS-R, regardless of the extraction methods of the reflected signals or the types of the observation platform, three key issues have to be determined: The specular reflection point, the spatial resolution and the detection depth in the soil. However, in current literatures, there are no comprehensive explanations of the above three key issues. This paper conducts theoretical analysis and formula derivation, aiming to systematically and quantitatively determine the extent of soil moisture being detected in three dimensions from the above-mentioned aspects. To further explain how the three factors behave in the specific application, the results of two application scenarios are shown: (1) a ground-based GPS measurement in Marshall, Colorado, US from the Plate Boundary Observatory, corresponding to single-antenna pattern. The relative location of the specular reflection points, the average area of the First Fresnel Ellipse Clusters and the sensing depth of the time-series soil moisture are analyzed, and (2) an aviation experiment conducted in Zhengzhou to retrieve soil moisture content, corresponding to the multi-antenna pattern. The spatial distribution of soil moisture estimation with a certain resolution based on the flight tracks and the relevant sensing depth are manifested. For remote sensing using GNSS reflected signals, BeiDou is different from GPS mainly in the carrier frequency. Therefore, the results of this study can provide references for China’s future development of the BeiDou-R technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.