In this study, the simulation and optimization of the partition cooling in the hot stamping process was carried out for an automotive B-pillar through minimizing the maximum thickening rate and the maximum thinning rate located in the rapid and slow cooling zones. The optimization was implemented by investigating the process parameters such as friction coefficient, sheet austenitizing temperature, holding time, heating zone temperature, the upper binder force and the lower binder force. The optimal Latin hypercube design (OLHD), the response surface methodology (RSM) and the non-dominated sorting genetic algorithm (NSGA-II) were combined to establish the relationship between process parameters and form quality objectives. After multi-objective optimization, the maximum thickening rate and the maximum thinning rate of the slow cooling zone and rapid cooling zone were 11.1% and 12.4%, 4.7% and 7.1%, respectively. Afterwards, the simulation was performed according to the optimized parameter combinations to analyze the temperature field, microstructure, tensile strength, hardness, thickening rate and thinning rate, and forming quality. Moreover, the hot stamping test and experimental results showed that the microstructure of the ferrite and pearlite structure was uniformly distributed in the slow cooling zone, and its tensile strength reached 680 MPa, the elongation was 11.4% and the hardness was 230.56 HV, while the lath martensite structure was obtained in the rapid cooling zone, with tensile strength of up to 1390 MPa, elongation of about 7.0% and hardness reaching 478.78 HV. The results of thickness, microstructure, tensile strength and the hardness test correspond well with the simulation results.
Given that the kinetics of the thermal degreasing process of alumina ceramics based on stereolithography apparatus (SLA) has not been investigated, the mechanism of crack generation is still not fully revealed. This paper aims to elucidate the mechanism of crack generation in the degreasing process of alumina ceramics and to establish a kinetic model for alumina ceramics. Two sintering atmospheres, air, and argon, were selected for the degreasing tests at 100°C–700°C. The reaction products and mass changes of alumina ceramics were analyzed by TG‐FTIR and TG‐DSC (heating rates of 5, 10, and 15°C/min, respectively). Meanwhile, Boswell, Friedman, Ozawa, and DAEM model was used to describe the nonisothermal kinetics of the SLA alumina ceramic degreasing process. The results showed that setting the holding time to 400°C–425°C could promote the slow release of heat from the alumina ceramics. The thermal degreasing stage of the ceramic generated fewer cracks in the argon atmosphere than in the air atmosphere. The corresponding average activation energy values were 105.40 kJ/mol (Boswell model), 112.48 kJ/mol (Friedman model), 108.14 kJ/mol (Ozawa model), and 101.36 kJ/mol (DAEM model). The results of the study could provide an invaluable reference for the fabrication of defect‐free SLA alumina ceramics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.