Oxygen vacancy (OV)-containing semiconductor photocatalysts have been extensively studied and applied in environmental and energy fields, but there are a few studies concerning the mechanisms of inactivation and regeneration of OVs to prevent the catalysts from deactivation. In this paper, we put forward a novel in situ method to introduce the OVs into BiSbO 4 (BiSbO 4 -OV) via UV-light-induced breaking down of Bi− O and Sb−O bonds. The formation of OVs could broaden the photoresponse range and improve the charge carrier separation as confirmed by density functional theory calculation and UV and photoluminescence spectroscopy. The unique electronic structure of OVs endowed BiSbO 4 with high visible light photocatalytic NO activity. It was significant to reveal that oxygen in the air could fill the OV sites during the photocatalytic reaction and the consumption of the OVs led to the direct deactivation of BiSbO 4 -OV. By re-irradiation of the deactivated photocatalysts, BiSbO 4 -OV could get back to its initial state, realizing the refreshment of OVs for sustainable photocatalysis. Additionally, the visible light photocatalytic NO conversion pathway on BiSbO 4 -OV was uncovered via in situ diffuse reflectance infrared Fourier transform spectroscopy based on the identification of the reaction intermediates and products. The light-induced generation and regeneration of OVs could also be extended to other semiconductors for sustainable visible light photocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.