The spatial distribution of coastal wetlands affects their ecological functions. Wetland classification is a challenging task for remote sensing research due to the similarity of different wetlands. In this study, a synergetic classification method developed by fusing the 10 m Zhuhai-1 Constellation Orbita Hyperspectral Satellite (OHS) imagery with 8 m C-band Gaofen-3 (GF-3) full-polarization Synthetic Aperture Radar (SAR) imagery was proposed to offer an updated and reliable quantitative description of the spatial distribution for the entire Yellow River Delta coastal wetlands. Three classical machine learning algorithms, namely, the maximum likelihood (ML), Mahalanobis distance (MD), and support vector machine (SVM), were used for the synergetic classification of 18 spectral, index, polarization, and texture features. The results showed that the overall synergetic classification accuracy of 97% is significantly higher than that of single GF-3 or OHS classification, proving the performance of the fusion of full-polarization SAR data and hyperspectral data in wetland mapping. The synergy of polarimetric SAR (PolSAR) and hyperspectral imagery enables high-resolution classification of wetlands by capturing images throughout the year, regardless of cloud cover. The proposed method has the potential to provide wetland classification results with high accuracy and better temporal resolution in different regions. Detailed and reliable wetland classification results would provide important wetlands information for better understanding the habitat area of species, migration corridors, and the habitat change caused by natural and anthropogenic disturbances.
Turbidity maximum zone (TMZ) plays a crucial role in estuarine ecosystems, exerting effects on erosion, environment evolution and socioeconomic activities in the coastal area. However, the long-term understanding of the TMZ in large river estuary such as the Yellow River estuary is still lacking. In this study, we focus on the TMZ distribution, variation and regulation mechanisms in the Yellow River estuary from different time scales. Based on time series Landsat images during the period 1984 to 2021 and Google Earth Engine (GEE), we proposed a TMZ extracting method in the Yellow River estuary to generate 322 TMZ maps. The overall accuracy of our algorithm reached 97.4%. The results show that there are clear decadal and seasonal TMZ variations during the 38-year period in the Yellow River estuary. Morphology, currents and wind speeds combined with seawater stratification have direct effects on TMZ at different time scales, while the direct impacts of tides and fluvial output of the Yellow River on TMZ are limited. In this article, the highly robust method provides a cost-effective alternative to accurately map the TMZ in global large river estuaries and systematically reveals the spatiotemporal evolution of TMZ, shedding light on the response mechanism of coastal geomorphology, marine ecological environment and biogeochemical cycle.
Tidal flats are one of the most productive ecosystems on Earth, providing essential ecological and economical services. Because of the increasing anthropogenic interruption and sea level rise, tidal flats are under great threat. However, updated and large-scale accurate tidal flat maps around the Bohai and Yellow Seas are still relatively rare, hindering the assessment and management of tidal flats. Based on time-series Sentinel-2 imagery and Google Earth Engine (GEE), we proposed a new method for tidal flat mapping with the Normalized Difference Water Index (NDWI) extremum composite around the Bohai and Yellow Seas. Tidal flats were derived from the differences of maximum and minimum water extent composites. Overall, 3477 images acquired from 1 Oct 2020 to 31 Oct 2021 produced a tidal flat map around the Bohai and Yellow Seas with an overall accuracy of 94.55% and total area of 546,360.2 ha. The resultant tidal flat map at 10 m resolution, currently one of the most updated products around the Bohai and Yellow Seas, could facilitate the process of sustainable policy making related to tidal flats and will help reveal the processes and mechanisms of its responses to natural and human disturbance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.