We structure a phytoplankton zooplankton interaction system by incorporating (i) Monod-Haldane type functional response function; (ii) two delays accounting, respectively, for the gestation delay τ of the zooplankton and the time τ 1 required for the maturity of TPP. Firstly, we give the existence of equilibrium and property of solutions. The global convergence to the boundary equilibrium is also derived under a certain criterion. Secondly, in the case without the maturity delay τ 1 , the gestation delay τ may lead to stability switches of the positive equilibrium. Then fixed τ in stable interval, the effect of τ 1 is investigated and find τ 1 can also cause the oscillation of system. Specially, when τ = τ 1 , under certain conditions, the periodic solution will exist with the wide range as delay away from critical value. To deal with the local stability of the positive equilibrium under a general case with all delays being positive, we use the crossing curve methods, it can obtain the stable changes of positive equilibrium in (τ, τ 1 ) plane. When choosing τ in the unstable interval, the system still can occur Hopf bifurcation, which extends the crossing curve methods to the system exponentially decayed delay-dependent coefficients. Some numerical simulations are given to indicate the correction of the theoretical analyses.
Plankton blooms and its control is an intriguing problem in ecology. To investigate the oscillatory nature of blooms, a two-dimensional model for plankton species is considered where one species is toxic phytoplankton and other is zooplankton. The delays required for the maturation time of zooplankton, the time for phytoplankton digestion and the time for phytoplankton cells to mature and release toxic substances are incorporated and the delayed model is analyzed for stability and bifurcation phenomena. It proves that periodic plankton blooms can occur when the delay (the sum of the above three delays) changes and crosses some threshold values. The phenomena described by this mechanism can be controlled through the toxin release rates of phytoplankton. Then, a delay feedback controller with the coefficient depending on delay is introduced to system. It concludes that the onset of the bifurcation can be delayed as negative feedback gain (the decay rate) decreases (increases). Some numerical examples are given to verify the effectiveness of the delay feedback control method and the existence of crossing curve. These results show that the oscillatory nature of blooms can be controlled by human behaviors.
In this paper, a phytoplankton and zooplankton relationship system with two delays is investigated whose coefficients are related to one of the two delays. Firstly, the dynamic behaviors of the system with one delay are given and the stability of positive equilibrium and the existence of periodic solutions are obtained. Using the fact that the system may occur, the stable switching phenomenon is verified. Under certain conditions, the periodic solutions will exist in a wide range as the delay gets away from critical values. Fixing the delay [Formula: see text] in the stable interval, it is revealed that the effect of [Formula: see text] can also cause the vibration of system. This explains that two delays play an important role in the oscillation behavior of the system. Furthermore, using the crossing curve methods, the stable changes of the positive equilibrium in two-delays plane are given, which generalizes the results of systems for which the coefficients do not depend on delay. Some numerical simulations are provided to verify the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.