BackgroundThe molecular mechanisms involved in plant tolerance to either drought or cold have been extensively studied in many plant species. However, few studies have focused on their comparisons especially using non-model plants with strong tolerance to both stresses. Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. is the only evergreen broadleaf shrub grown in the central Asian desert and it has very strong cold and drought tolerance. To provide further insights into plant tolerance, the transcriptome profiles of drought- and cold-treated A. mongolicus seedlings were analyzed using Illumina technology and differentially expressed genes (DEGs) were compared.ResultsA comprehensive transcriptome of A. mongolicus was sequenced using pooled mRNA extracted from drought-, cold-stressed and unstressed seedlings as well as leaves from naturally grown shrub. These sequences were assembled into 86058 unigenes, of which 51014 unigenes had an annotated function and 2440 encoded transcription factors (TFs). Transcriptome profiles were analyzed in A. mongolicus seedlings after drought and cold treatments at three time points (2, 8 and 24 h). Between 3917 and 6102 unigenes were identified as DEGs at a single time point in both stresses. Among these DEGs 2028 and 2026 DEGs were common across the three time points of drought and cold treatments respectively, and 971 DEGs were co-regulated by both stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The most pronounced findings are that flavonoid biosynthesis genes were enriched in the DEGs co-up-regulated by both stresses; while membrane protein genes and genes related to chloroplast were abundant in the DEGs specifically up-regulated by drought or cold, respectively. Furthermore, the DREB, ERF, NAC and WRKY TFs were predominantly co-up-regulated by both stresses.ConclusionsThe present study provides the most comprehensive transcriptome resource and the first dynamic transcriptome profiles of A. mongolicus under drought and cold stresses. This information will deepen our understanding of plant tolerance to drought and cold. The up-regulated DEGs will be valuable for further investigations of key genes and molecular mechanisms involved in the adaptation of A. mongolicus to harsh environments.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-671) contains supplementary material, which is available to authorized users.
The calcineurin B-like proteins (CBLs) represent a unique family of calcium sensors in plants. Although extensive studies and remarkable progress have been made in Arabidopsis (Arabidopsis thaliana) CBLs, their functions in other plant species are still quite limited. Here, we report the cloning and functional characterization of ZmCBL4, a novel CBL gene from maize (Zea mays). ZmCBL4 encodes a putative homolog of the Arabidopsis CBL4/SOS3 protein, with novel properties. ZmCBL4 has one copy in maize genome and harbors seven introns in its coding region. ZmCBL4 expressed differentially in various organs of the maize plants at a low level under normal condition, and its expression was regulated by NaCl, LiCl, ABA and PEG treatments. Expression of 35S::ZmCBL4 not only complemented the salt hypersensitivity in Arabidopsis sos3 mutant, but also enhanced the salt tolerance in Arabidopsis wild type at the germination and seedling stages. Moreover, the LiCl tolerance in all of the ZmCBL4-expressing lines increased more significantly as compared with the NaCl tolerance, and in consistent with this, it was found that the expression of Arabidopsis AtNHX8, a putative plasma membrane Li + /H + antiporter gene identified recently, was induced in these transgenic lines under LiCl stress. The ZmCBL4-expressing Arabidopsis lines accumulated less Na + and Li + as compared with the control plants. This study has identified a putative maize CBL gene which functions in the salt stress-elicited calcium signaling and thus in the tolerance to salinity.
DWF4 encodes a rate-limiting mono-oxygenase that mediates 22alpha-hydroxylation reactions in the BR biosynthetic pathway and it is the target gene in the BR feedback loop. Knockout of DWF4 results in a dwarfed phenotype and other severe defects in Arabidopsis. Here we report on the isolation of the ZmDWF4 gene in maize. Sequence analysis revealed that the open reading frame of ZmDWF4 was 1,518 bp, which encodes a protein composed of 505 amino acid residues with a calculated molecular mass of 57.6 kD and a predicated isoelectric point (pI) of 9.54. Phylogenetic analysis indicated that ZmDWF4 was very close to the Arabidopsis DWF4. In young maize seedlings, the expression of ZmDWF4 in shoots was much higher than that in roots. The highest expression of ZmDWF4 was observed in husk leaves and the lowest in silks during flowering stage. The expression of ZmDWF4 in maize was significantly down regulated by exogenous brassinolide. A heterogeneous complementary experiment demonstrated that the defects of three Arabidopsis DWF4 mutants could be rescued by constitutive expression of ZmDWF4, with leaf expandability, inflorescence stem heights and fertile capabilities all restored to normal levels. Increases in seed and branch number as well as the height of florescence stem were observed in the over-expressed transformants. These findings suggest that ZmDWF4 may be an ortholog gene of Arabidopsis DWF4 and responsible for BR biosynthesis in maize.
We report a mechanism to obtain optical pulling or pushing forces exerted on the active dispersive chiral media. Electromagnetic wave equations for the pure chiral media using constitutive relations containing dispersive Drude models are numerically solved by means of Auxiliary Differential Equation Finite Difference Time Domain (ADE-FDTD) method. This method allows us to access the time averaged Lorentz force densities exerted on the magnetoelectric coupling chiral slabs via the derivation of bound electric and magnetic charge densities, as well as bound electric and magnetic current densities. Due to the continuously coupled cross-polarized electromagnetic waves, we find that the pressure gradient force is engendered on the active chiral slabs under a plane wave incidence. By changing the material parameters of the slabs, the total radiation pressure exerted on a single slab can be directed either along the propagation direction or in the opposite direction. This finding provides a promising avenue for detecting the chirality of materials by optical forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.