Legumes play a vital role in maintaining the nitrogen cycle of the biosphere. They conduct symbiotic nitrogen fixation through endosymbiotic relationships with bacteria in root nodules. However, this and other characteristics of legumes, including mycorrhization, compound leaf development and profuse secondary metabolism, are absent in the typical model plant Arabidopsis thaliana. We present LegumeIP (http://plantgrn.noble.org/LegumeIP/), an integrative database for comparative genomics and transcriptomics of model legumes, for studying gene function and genome evolution in legumes. LegumeIP compiles gene and gene family information, syntenic and phylogenetic context and tissue-specific transcriptomic profiles. The database holds the genomic sequences of three model legumes, Medicago truncatula, Glycine max and Lotus japonicus plus two reference plant species, A. thaliana and Populus trichocarpa, with annotations based on UniProt, InterProScan, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases. LegumeIP also contains large-scale microarray and RNA-Seq-based gene expression data. Our new database is capable of systematic synteny analysis across M. truncatula, G. max, L. japonicas and A. thaliana, as well as construction and phylogenetic analysis of gene families across the five hosted species. Finally, LegumeIP provides comprehensive search and visualization tools that enable flexible queries based on gene annotation, gene family, synteny and relative gene expression.
Maize kernel is an important source of food, feed, and industrial raw materials. The elucidation of the molecular mechanisms of maize kernel development will be helpful for the manipulation of maize improvements. A microarray with approximately 58,000 probes was used to study dynamic gene expression during kernel development from fertilization to physiological maturity. By comparing six consecutive time points, 3445 differentially expressed genes were identified. These genes were then grouped into 10 clusters showing specific expression patterns using a K-means clustering algorithm. An investigation of function and expression patterns of genes elucidate the regulation mechanism underlying the important developmental processes cell division and kernel filling. The differential expression of genes involved in plant hormone signaling pathways suggested that phytohormone might play a critical role in the kernel developmental process. Moreover, regulation of some transcription factors and protein kinases might be involved in the whole developmental process.
The calcineurin B-like proteins (CBLs) represent a unique family of calcium sensors in plants. Although extensive studies and remarkable progress have been made in Arabidopsis (Arabidopsis thaliana) CBLs, their functions in other plant species are still quite limited. Here, we report the cloning and functional characterization of ZmCBL4, a novel CBL gene from maize (Zea mays). ZmCBL4 encodes a putative homolog of the Arabidopsis CBL4/SOS3 protein, with novel properties. ZmCBL4 has one copy in maize genome and harbors seven introns in its coding region. ZmCBL4 expressed differentially in various organs of the maize plants at a low level under normal condition, and its expression was regulated by NaCl, LiCl, ABA and PEG treatments. Expression of 35S::ZmCBL4 not only complemented the salt hypersensitivity in Arabidopsis sos3 mutant, but also enhanced the salt tolerance in Arabidopsis wild type at the germination and seedling stages. Moreover, the LiCl tolerance in all of the ZmCBL4-expressing lines increased more significantly as compared with the NaCl tolerance, and in consistent with this, it was found that the expression of Arabidopsis AtNHX8, a putative plasma membrane Li + /H + antiporter gene identified recently, was induced in these transgenic lines under LiCl stress. The ZmCBL4-expressing Arabidopsis lines accumulated less Na + and Li + as compared with the control plants. This study has identified a putative maize CBL gene which functions in the salt stress-elicited calcium signaling and thus in the tolerance to salinity.
DWF4 encodes a rate-limiting mono-oxygenase that mediates 22alpha-hydroxylation reactions in the BR biosynthetic pathway and it is the target gene in the BR feedback loop. Knockout of DWF4 results in a dwarfed phenotype and other severe defects in Arabidopsis. Here we report on the isolation of the ZmDWF4 gene in maize. Sequence analysis revealed that the open reading frame of ZmDWF4 was 1,518 bp, which encodes a protein composed of 505 amino acid residues with a calculated molecular mass of 57.6 kD and a predicated isoelectric point (pI) of 9.54. Phylogenetic analysis indicated that ZmDWF4 was very close to the Arabidopsis DWF4. In young maize seedlings, the expression of ZmDWF4 in shoots was much higher than that in roots. The highest expression of ZmDWF4 was observed in husk leaves and the lowest in silks during flowering stage. The expression of ZmDWF4 in maize was significantly down regulated by exogenous brassinolide. A heterogeneous complementary experiment demonstrated that the defects of three Arabidopsis DWF4 mutants could be rescued by constitutive expression of ZmDWF4, with leaf expandability, inflorescence stem heights and fertile capabilities all restored to normal levels. Increases in seed and branch number as well as the height of florescence stem were observed in the over-expressed transformants. These findings suggest that ZmDWF4 may be an ortholog gene of Arabidopsis DWF4 and responsible for BR biosynthesis in maize.
ADP-glucose pyrophosphorylase (AGPase) plays a key role in regulating starch biosynthesis in cereal seeds and is likely the most important determinant of seed strength. The Escherichia coli mutant glgC gene (glgC16), which encodes a highly active and allosterically insensitive AGPase, was introduced into maize (Zea mays L.) under the control of an endosperm-specific promoter. Developing seeds from transgenic maize plants showed up to 2-4-fold higher levels of AGPase activity in the presence of 5 mM inorganic phosphate (Pi). Transgenic plants with higher cytoplasmic AGPase activity under Pi-inhibitory conditions showed increases (13-25%) in seed weight over the untransformed control. In addition, in all transgenic maize plants, the seeds were fully filled, and the seed number of transgenic plants had no significant difference compared with that of untransformed control. These results indicate that increasing cytoplasmic AGPase activity has a marked effect on sink activity and, in turn, seed weight in transgenic maize plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.