Dislocation dynamics simulation is used to investigate the effect of grain size and grain shape on the flow stress in model copper grains. We consider grains of 1.25 -10 µm size, three orientations (<135>, <100> and <111>) and three shapes (cube, plate and needles). Two types of periodic aggregates with one or four grains are simulated to investigate different dislocation flux at grain boundaries. It is shown that in all cases the flow stress varies linearly with the inverse of the square root of the grain size, with a proportionality factor varying strongly with the grain orientation and shape. Simulation results are discussed in the light of other simulation results and experimental observations. Finally, a simple model is proposed to account for the grain shape influence on the grain size effect.
Gray blight of tea, caused by several Pestalotiopsis-like species, is one of the most destructive foliar diseases in tea cultivation yet the characteristics of these pathogens have not been confirmed until now. With morphological and multigene phylogenetic analyses, we have identified the gray blight fungi as Pseudopestalotiopsis camelliae-sinensis, Neopestalotiopsis clavispora, and Pestalotiopsis camelliae. Phylogenetic analyses derived from the combined internal transcribed spacer, β-tubulin, and translation elongation factor 1-α gene regions successfully resolved most of the Pestalotiopsis-like species used in this study with high bootstrap supports and revealed three major clusters representing these three species. Differences in colony appearance and conidia morphology (shape, size, septation, color and length of median cells, and length and number of apical and basal appendages) were consistent with the phylogenetic grouping. Pathogenicity tests validated that all three species isolated from tea leaves were causal agents of gray blight disease on tea plant (Camellia sinensis). This is the first description of the characteristics of the three species Pseudopestalotiopsis camelliae-sinensis, N. clavispora, and Pestalotiopsis camelliae as causal agents of tea gray blight disease in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.