Sebagai upaya untuk memenangkan persaingan di pasar, perusahaan farmasi harus menghasilkan produk obat – obatan yang berkualitas. Untuk menghasilkan produk yang berkualitas, diperlukan perencanaan produksi yang baik dan efisien. Salah satu dasar perencanaan produksi adalah prediksi penjualan. PT. Metiska Farma telah menerapkan metode prediksi dalam proses produksi, akan tetapi prediksi yang dihasilkan tidak akurat sehingga menyebabkan tidak optimal dalam memenuhi permintaan pasar. Untuk meminimalisir masalah kurang akuratnya proses prediksi tersebut, dalam penelitian yang disajikan pada makalah ini dilakukan uji coba prediksi menggunakan teknik Machine Learning dengan metode Regresi Long Short Term Memory (LSTM). Teknik yang diusulkan diuji coba menggunakan dataset penjualan produk “X” dari PT. Metiska Farma dengan parameter kinerja Root Mean Squared Error (RMSE) dan MAPE (Mean Absolute Percentage Error). Hasil penelitian ini berupa nilai rata – rata evaluasi error dari pemodelan data training dan data testing. Di mana hasil menunjukan bahwa Regresi LSTM memiliki nilai prediksi penjualan dengan evaluasi model melalui RMSE sebesar 286.465.424 untuk data training dan 187.013.430 untuk data testing. Untuk nilai MAPE sebesar 787% dan 309% untuk data training dan data testing secara berurut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.