Finding geometric primitives in 3D point clouds is a fundamental task in many engineering applications such as robotics, autonomous-vehicles and automated industrial inspection. Among all solid shapes, cylinders are frequently found in a variety of scenes, comprising natural or man-made objects. Despite their ubiquitous presence, automated extraction and fitting can become challenging if performed "in-the-wild", when the number of primitives is unknown or the point cloud is noisy and not oriented.In this paper we pose the problem of extracting multiple cylinders in a scene by means of a Game-Theoretic inlier selection process exploiting the geometrical relations between pairs of axis candidates. First, we formulate the similarity between two possible cylinders considering the rigid motion aligning the two axes to the same line. This motion is represented with a unitary dual-quaternion so that the distance between two cylinders is induced by the length of the shortest geodesic path in SE(3). Then, a Game-Theoretical process exploits such similarity function to extract sets of primitives maximizing their inner mutual consensus. The outcome of the evolutionary process consists in a probability distribution over the sets of candidates (ie axes), which in turn is used to directly estimate the final cylinder parameters. An extensive experimental section shows that the proposed algorithm offers a high resilience to noise, since the process inherently discards inconsistent data. Compared to other methods, it does not need point normals and does not require a fine tuning of multiple parameters.
High Dynamic Range (HDR) imaging techniques aim to increase the range of luminance values captured from a scene. The literature counts many approaches to get HDR images out of low-range camera sensors, however most of them rely on multiple acquisitions producing ghosting effects when moving objects are present.In this paper we propose a novel HDR reconstruction method exploiting stereo Polarimetric Filter Array (PFA) cameras to simultaneously capture the scene with different polarized filters, producing intensity attenuations that can be related to the light polarization state. An additional linear polarizer is mounted in front of one of the two cameras, raising the degree of polarization of rays captured by the sensor. This leads to a larger attenuation range between channels regardless the scene lighting condition. By merging the data acquired by the two cameras, we can compute the actual light attenuation observed by a pixel at each channel and derive an equivalent exposure time, producing a HDR picture from a single polarimetric shot. The proposed technique results comparable to classic HDR approaches using multiple exposures, with the advantage of being a one-shot method.
Polarisation Filter Array (PFA) cameras allow the analysis of light polarisation state in a simple and cost-effective manner. Such filter arrays work as the Bayer pattern for colour cameras, sharing similar advantages and drawbacks. Among the others, the raw image must be demosaiced considering the local variations of the PFA and the characteristics of the imaged scene.Non-linear effects, like the cross-talk among neighbouring pixels, are difficult to explicitly model and suggest the potential advantage of a data-driven learning approach. However, the PFA cannot be removed from the sensor, making it difficult to acquire the ground-truth polarization state for training.In this work we propose a novel CNN-based model which directly demosaics the raw camera image to a per-pixel Stokes vector. Our contribution is twofold. First, we propose a network architecture composed by a sequence of Mosaiced Convolutions operating coherently with the local arrangement of the different filters. Second, we introduce a new method, employing a consumer LCD screen, to effectively acquire real-world data for training. The process is designed to be invariant by monitor gamma and external lighting conditions. We extensively compared our method against algorithmic and learning-based demosaicing techniques, obtaining a consistently lower error especially in terms of polarisation angle.
Abstract. When a physical feature is observed by two or more cameras, its position in the 3D space can be easily recovered by means of triangulation. However, for such estimate to be reliable, accurate intrinsic and extrinsic calibration of the capturing devices must be available. Extrinsic parameters are usually the most problematic, especially when dealing with a large number of cameras. This is due to several factors, including the inability to observe the same reference object over the entire network and the sometimes unavoidable displacement of cameras over time. With this paper we propose a game-theoretical method that can be used to dynamically select the most reliable rigid motion between cameras observing the same feature point. To this end we only assume to have a (possibly incomplete) graph connecting cameras whose edges are labelled with extrinsic parameters obtained through pairwise calibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.