The article considers the Aller Lykov equation with a Riemann Liouville fractional time derivative, boundary conditions of the third kind and with the concentrated specific heat capacity on the boundary of the domain. Similar conditions arise in the case with a material of a higher thermal conductivity when solving a temperature problem for restricted environment with a heater as a concentrated heat capacity. Analogous conditions also arise in practices for regulating the water-salt regime of soils, when desalination of the upper layer is achieved by draining of a surface of the flooded for a while area. Using energy inequality methods, we obtained an a priori estimate in terms of the Riemann Liouville fractional derivative, which revealed the uniqueness of the solution to the problem under consideration.
The heat-moisture transfer in soils is a fundamental base in addressing many problems of hydrology, agrophysics, building physics and other fields of science. The researchers focus on possibility of reflecting specific features of the studied arrays in the equations as well as their structure, physical properties, the processes going on in them, etc. In view of this, there arises a new class of fractional differential equations of state and transport being the base for most mathematical models describing a wide class of physical and chemical processes in media with a fractal structure and memory.This paper studies the Dirichlet boundary value problem for the Aller-Lykov moisture transfer equation with the Riemann-Liouville fractional derivative in time. The considered equation is a generalization of the Aller-Lykov equation obtained by means of introducing the concept of the fractal rate of humidity change, which accounts the presence of flows moving against the moisture potential.The existence of the solution to the Dirichlet boundary value problem is proved by the Fourier method. By means of energy inequalities method, for the solution we obtain an apriori estimate in terms of fractional Riemann-Liouville derivative, which implies the uniqueness of the solution.
The paper studies qualitatively new equations of moisture transfer, which generalize the Aller and Aller-Lykov equations. The generalization contributes to revealing in the original equations the specific features of the studied massifs, their structure, physical properties, processes occurring in them through the introduction of the notion of the rates of change of the fractal dimension. We have obtained solutions to the constant coefficient difference equations as a system arising when using the method of lines for the equations with a Riemann-Liouville time fractional derivative with boundary conditions of the first kind. A priori estimates are obtained that imply convergence of the obtained solutions to systems of ordinary differential equations with variable fractional coefficients. Numerical tests have been carried out to confirm theoretical results of the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.