Smart structures have attracted significant research attention in the last decade, mainly due to the capabilities of advanced concrete in electrical resistance-enabled self-sensing. In this study, we present a type of environment-friendly, self-sensing concrete enabled by electrical resistance. Environment-friendly, self-sensing concrete was casted with the additions of byproduct wastes (i.e., coal fly ash (FA), blast furnace slag (BOF) and red mud (RM)) at various volume fractions and cured using the conditions of 3, 7 and 28 days. The self-sensing concrete samples were experimentally tested to investigate the effects of the byproduct wastes on the mechanical and electrical properties (i.e., compressive strength and electrical resistance). In the end, parametric studies were experimentally conducted to investigate the influences of the byproduct wastes on the mechanical and electrical properties of the reported environment-friendly, self-sensing concrete.
Hollow aluminum and silica microsphere is a component of ash wastes from heat and power industry that today is widely used as a microaddition almost in all sectors of economy. It is used to improve properties of different materials and constructions or to produce advanced properties of these materials. Hollow aluminum and silica microsphere is non-reactive microaddition that determine its advantages in producing ecologically friendly materials and in providing materials with additional properties without changing the basic. In this paper research has been conducted on identifying the modulus of viscosity focused on the effect on the capacity to form structure links that are influence the properties of producing leak less framework. Modulus of viscosity is one of the main dynamic characteristics of fill finely divided materials that determine materials and constructions strength properties including the capability to form a rigid frame. The research was carried out to determine the correlation between the modulus of viscosity and the humidity of raw component in order to identify optimal conditions of material formation and producing an item with the highest level of durability and rigidity. Moreover, the paper revealed the connection between the modulus of viscosity and the size of non-reactive microaddition based on set humidity and the influence of the microaddition size on the trend in modulus of viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.