The continuous wavelet transform has been proposed recently for the interpretation of potential field anomalies. Using Poisson wavelets, which are equivalent to an upward continuation of the analytic signal, this technique allows one to estimate the depth of burial of homogeneous field sources and to determine the nature of the source in the form of a structural index. Moreau et al. (1999) accomplish this by successively testing the least‐squares misfit on a log–log plot of the wavelet transform amplitude versus the sum of the depth and the dilation (upward continuation height). We extend this methodology by analyzing the ratio of the Poisson wavelet coefficients of the first and second orders. For simple pole sources, this ratio at one dilation is enough to estimate the depth and index uniquely; but for extended sources of finite size, we must analyze the variation of the estimates with dilations. The technique gives good results on synthetic and field examples.
Mining exploration was very active during the first decade of the twenty-first century because there were numerous advances in the science and technology that geophysicists were using for mineral exploration. Development came from different sources: instrumentation improvements, new numerical algorithms, and cross-fertilization with the seismic industry. In gravity, gradiometry kept its promise and is on the cusp of becoming a key technology for mining exploration. In potential-field methods in general, numerous techniques have been developed for automatic interpretation, and 3D inversion schemes came into frequent use. These inversions will have even greater use when geologic constraints can be applied easily. In airborne electromagnetic (EM) methods, the development of time-domain helicopter EM systems changed the industry. In parallel, improvements in EM modeling and interpretation occurred; in particular, the strengths and weaknesses of the various algorithms became better understood. Simpler imaging schemes came into standard use, whereas layered inversion seldom is used in the mining industry today. Improvements in ground EM methods were associated with the development of SQUID technology and distributed-acquisition systems; the latter also impacted ground induced-polarization (IP) methods. Developments in borehole geophysics for mining and exploration were numerous. Borehole logging to measure physical properties received significant interest. Perhaps one reason for that interest was the desire to develop links between geophysical and geologic results, which also is a topic of great importance to mining geologists and geophysicists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.