De novo mutations (DNM) are an important source of rare variants and are increasingly being linked to the development of many diseases. Recently, the paternal age effect has been the focus of a number of studies that attempt to explain the observation that increasing paternal age increases the risk for a number of diseases. Using disease-free familial quartets we show that there is a strong positive correlation between paternal age and germline DNM in healthy subjects. We also observed that germline CNVs do not follow the same trend, suggesting a different mechanism. Finally, we observed that DNM were not evenly distributed across the genome, which adds support to the existence of DNM hotspots.
BackgroundThe advent of high throughput sequencing methods breeds an important amount of technical challenges. Among those is the one raised by the discovery of copy-number variations (CNVs) using whole-genome sequencing data. CNVs are genomic structural variations defined as a variation in the number of copies of a large genomic fragment, usually more than one kilobase. Here, we aim to compare different CNV calling methods in order to assess their ability to consistently identify CNVs by comparison of the calls in 9 quartets of identical twin pairs. The use of monozygotic twins provides a means of estimating the error rate of each algorithm by observing CNVs that are inconsistently called when considering the rules of Mendelian inheritance and the assumption of an identical genome between twins. The similarity between the calls from the different tools and the advantage of combining call sets were also considered.ResultsERDS and CNVnator obtained the best performance when considering the inherited CNV rate with a mean of 0.74 and 0.70, respectively. Venn diagrams were generated to show the agreement between the different algorithms, before and after filtering out familial inconsistencies. This filtering revealed a high number of false positives for CNVer and Breakdancer. A low overall agreement between the methods suggested a high complementarity of the different tools when calling CNVs. The breakpoint sensitivity analysis indicated that CNVnator and ERDS achieved better resolution of CNV borders than the other tools. The highest inherited CNV rate was achieved through the intersection of these two tools (81%).ConclusionsThis study showed that ERDS and CNVnator provide good performance on whole genome sequencing data with respect to CNV consistency across families, CNV breakpoint resolution and CNV call specificity. The intersection of the calls from the two tools would be valuable for CNV genotyping pipelines.
Summary: Genotype imputation is now commonly performed following genome-wide genotyping experiments. Imputation increases the density of analyzed genotypes in the dataset, enabling fine-mapping across the genome. However, the process of imputation using the most recent publicly available reference datasets can require considerable computation power and the management of hundreds of large intermediate files. We have developed genipe, a complete genome-wide imputation pipeline which includes automatic reporting, imputed data indexing and management, and a suite of statistical tests for imputed data commonly used in genetic epidemiology (Sequence Kernel Association Test, Cox proportional hazards for survival analysis, and linear mixed models for repeated measurements in longitudinal studies).Availability and Implementation: The genipe package is an open source Python software and is freely available for non-commercial use (CC BY-NC 4.0) at https://github.com/pgxcentre/genipe. Documentation and tutorials are available at http://pgxcentre.github.io/genipe.Contact: louis-philippe.lemieux.perreault@statgen.org or marie-pierre.dube@statgen.orgSupplementary information: Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.