We have shown that cultured mouse neural crest (NC) cells exhibit transient increases in intracellular calcium. Up to 50% of the cultured NC-derived cells exhibited calcium transients during the period of neuronal differentiation. As neurogenic activity declined, so did the percentage of active NC-derived cells and their calcium spiking frequency. The decrease in calcium transient activity correlated with a decreased sensitivity to thimerosal, which sensitizes inositol 1,4,5-triphosphate receptors. Thimerosal increased the frequency of oscillations in active NC-derived cells and induced them in a subpopulation of quiescent cells. As neurogenesis ended, NC-derived cells became nonresponsive to thimerosal. Using the expression of time-dependent neuronal traits, we determined that neurons exhibited spontaneous calcium transients as early as a neuronal phenotype could be detected and continued through the acquisition of caffeine sensitivity, soon after which calcium transient activity stopped. A subpopulation of nonneuronal NC-derived cells exhibited calcium transient activity within the same time frame as neurogenesis in culture. Exposing NC-derived cells to 20 mM Mg(2+) blocked calcium transient activity and reduced neuronal number without affecting the survival of differentiated neurons. Using lineage-tracing analysis, we found that 50% of active NC-derived cells gave rise to clones containing neurons, while inactive cells did not. We hypothesize that calcium transient activity establishes a neuronal competence for undifferentiated NC cells.
The clearances of twelve amino acids from the ventricles during ventriculo-cisternal perfusion in the rabbit have been measured; uptake by the brain was also measured and this permitted the separate computation of loss to brain and loss to blood during the perfusion. Clearance under carrier-free conditions was greater than when a concentration of 5mM unlabeled amino acid was present in the perfusion fluid. Brain uptake was also usually reduced by the presence of unlabeled amino acid due presumably to suppression of accumulation by brain cells. Reduction of transport across the blood-brain barrier would tend to increase brain uptake, and there was some evidence for a balance between the two opposing tendencies. Inhibition of clearance of a given labeled amino acid could be brought about by unlabeled amino acids of different molecular species. In general, the amino acids fell into three categories: neutral, acidic, and basic, and there was some overlap between them; of the neutral amino acids the A- and L-classification of Christensen was valid, although once again there was some overlap. If, during ventriculo-cisternal perfusion of a labeled amino acid, the activity of this labeled amino acid in the blood was raised well above that in the inflowing perfusion fluid, the labeled amino acid continued to be cleared from the perfusion fluid, suggesting uphill transport. On this basis it was suggested that the normally low concentrations of amino acids in the cerebrospinal fluid (CSF), by comparison with those in plasma, were due to an active transport from the CSF to the blood. Substrate-facilitated transport, whereby the penetration of labeled amino acid into the perfusion fluid from blood could be accelerated by adding unlabeled amino acid to the perfusion fluid, or vice versa, was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.