The effects of the new cyclin-dependent kinase inhibitors, roscovitine and olomoucine, on oocytes and eggs of Xenopus laevis were investigated and compared with those of 6-dimethylamino purine (6-DMAP). The inhibitory properties of 6-DMAP, olomoucine and roscovitine towards p34cdc2-cyclin B isolated from Xenopus eggs revealed K-IC50 values of 300, 40 and 10 μM respectively. The three compounds inhibited progesterone-induced maturation with M-IC50 values of 200, 100 and 20 μM. These values were consistent with the K-IC50 values but the ratio M-IC50/K-IC50 was higher for roscovitine and olomoucine than for 6-DMAP. The disappearance of spindle and condensed chromosomes without pronucleus formation was observed when 1 mM 6-DMAP was applied for 4 h at germinal vesicle breakdown or at metaphase II, whereas no effect was observed using 1 mM olomoucine or 50 μM roscovitine. Changes in the electrophoretic mobility of p34cdc2 and erk2 were observed only in homogenates of matured oocytes or eggs exposed for 4 h to 1 mM 6-DMAP. When the drugs were microinjected into matured oocytes, olomoucine (100 μM) and roscovitine (50 μM) induced pronucleus formation more efficiently than did 6-DMAP (100 μM). Taken together, these results demonstrate that Xenopus oocytes possess a lower permeability to olomoucine and roscovitine and that these new compounds are suitable for in vivo studies after germinal vesicle breakdown provided they are microinjected.
We have recently shown that the incubation of Xenopus laevis oocytes in procaine-containing solutions induced germinal vesicle breakdown without white spot formation and, in some cases, with the appearance of spindle and chromosomes in the cytoplasm. The present study was performed to determine whether M-phase promoting factor was involved in this unusual maturation. Procaine failed to induce maturation in the presence of 6-dimethylamino purine or roscovitine, which are both known to inhibit p34 cdc2 kinase. Histone HI kinase activity was detected in procainertreated oocytes but it was always lower than in progesterone-treated controls. A shift in p34 c was observed in oocytes that had been exposed to procaine for 16h, but it was not detected in those exposed for 24 h. Finally, cytoplasm transfer experiments demonstrated that the maturation promoting activity that occurred in oocytes incubated in procaine for 16 h could induce maturation of recipient stage VI oocytes. This transferable activity was weaker than that from progesterone-treated controls since only 30% of the recipients underwent germinal vesicle breakdown and only a few spindles were observed, which were not always correctly located. Taken together these results demonstrate that M-phase promoting factor is involved in the procaine maturing effect despite some differences compared with progesterone-treated oocytes which might explain the particular type of maturation induced by this substance. The discovery of the mechanisms by which procaine is able to activate M-phase promoting factor might now help in the understanding of some steps in progesterone-induced maturation that have still to be elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.