Summary Coalbed methane (CBM) produced from subsurface coal deposits has been produced commercially for more than 30 years in North America, and relatively recently in Australia, China, and India. Historical challenges to predicting CBM-well performance and long-term production have included accurate estimation of gas in place (including quantification of in-situ sorbed gas storage); estimation of initial fluid saturations (in saturated reservoirs) and mobile water in place; estimation of the degree of undersaturation (undersaturated coals produce mainly water above desorption pressure); estimation of initial absolute permeability (system); selection of appropriate relative permeability curves; estimation of absolute-permeability changes as a function of depletion; prediction of produced-gas composition changes as a function of depletion; accounting for multilayer behavior; and accurate prediction of cavity or hydraulic-fracture properties. These challenges have primarily been a result of the unique reservoir properties of CBM. Much progress has been made in the past decade to evaluate fundamental properties of coal reservoirs, but obtaining accurate estimates of some basic reservoir and geomechanical properties remains challenging. The purpose of the current work is to review the state of the art in field-based techniques for CBM reservoir-property and stimulation-efficiency evaluation. Advances in production and pressure-transient analysis, gas-content determination, and material-balance methods made in the past 2 decades will be summarized. The impact of these new methods on the evaluation of key reservoir properties, such as absolute/relative permeability and gas content/gas in place, as well as completion/stimulation properties will be discussed. Recommendations on key surveillance data to assist with field-based evaluation of CBM, along with insight into practical usage of these data, will be provided.
Coalbed methane (CBM) produced from subsurface coal deposits, has been produced commercially now for over 30 years in North America, and relatively recently in Australia, China and India. Historical challenges to predicting CBM well performance and long-term production have included: accurate estimation of gas-in-place (including quantification of in-situ adsorbed gas storage); estimation of initial fluid saturations (in saturated reservoirs) and mobile-water-in-place, estimation of the degree of under-saturation (undersaturated coals produce mainly water above desorption pressure); estimation of initial absolute permeability (system); selection of appropriate relative permeability curves; estimation of absolute permeability changes as a function of depletion; prediction of produced gas composition changes as a function of depletion; accounting for multi-layer behavior, and accurate prediction of cavity or hydraulic fracture properties. These challenges have primarily been a result of the unique reservoir properties of CBM. Much progress has been made in the past decade to evaluate fundamental properties of coal reservoirs, but there is still work to be done to obtain accurate estimates of some basic reservoir properties.In recent years, horizontal wells and more complex well architectures and stimulation methodologies have been implemented to improve recovery of CBM. These more complex development options bring with them a new set of challenges for operators producing CBM. The exploitation of more geologically-complex coal with poorer reservoir quality will necessitate new and inventive ways to develop the existing natural gas resources and possibly combine this with new methods to extract energy from the coal in-situ. Development planning in these scenarios will become increasingly complex as will evaluation methods.The purpose of the current work is to review the state-of-the-art in CBM reservoir property and stimulation efficiency evaluation and speculate on possible CBM development scenarios for the future and the technical challenges they will bring. Current and future work required to meet these challenges will be discussed in the hope that industry, academia, and government bodies alike will be proactive in the development of solutions that will make future CBM recovery efficient, economic, and environmentally friendly.
Coalbed methane (CBM) produced from subsurface coal deposits, has been produced commercially now for over 30 years in North America, and relatively recently in Australia, China and India. Historical challenges to predicting CBM well performance and long-term production have included: accurate estimation of gas-in-place (including quantification of in-situ adsorbed gas storage); estimation of initial fluid saturations (in saturated reservoirs) and mobile-water-in-place, estimation of the degree of under-saturation (undersaturated coals produce mainly water above desorption pressure); estimation of initial absolute permeability (system); selection of appropriate relative permeability curves; estimation of absolute permeability changes as a function of depletion; prediction of produced gas composition changes as a function of depletion; accounting for multi-layer behavior, and accurate prediction of cavity or hydraulic fracture properties. These challenges have primarily been a result of the unique reservoir properties of CBM. Much progress has been made in the past decade to evaluate fundamental properties of coal reservoirs, but there is still work to be done to obtain accurate estimates of some basic reservoir properties.In recent years, horizontal wells and more complex well architectures and stimulation methodologies have been implemented to improve recovery of CBM. These more complex development options bring with them a new set of challenges for operators producing CBM. The exploitation of more geologically-complex coal with poorer reservoir quality will necessitate new and inventive ways to develop the existing natural gas resources and possibly combine this with new methods to extract energy from the coal in-situ. Development planning in these scenarios will become increasingly complex as will evaluation methods.The purpose of the current work is to review the state-of-the-art in CBM reservoir property and stimulation efficiency evaluation and speculate on possible CBM development scenarios for the future and the technical challenges they will bring. Current and future work required to meet these challenges will be discussed in the hope that industry, academia, and government bodies alike will be proactive in the development of solutions that will make future CBM recovery efficient, economic, and environmentally friendly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.