Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.
Real-time functional magnetic resonance imaging (rt-fMRI) has revived the translational perspective of neurofeedback (NF). Particularly for stress management, targeting deeply located limbic areas involved in stress processing has paved new paths for brain-guided interventions. However, the high cost and immobility of fMRI constitute a challenging drawback for the scalability (accessibility and costeffectiveness) of the approach, particularly for clinical purposes. The current study aimed to overcome the limited applicability of rt-fMRI by using an electroencephalography (EEG) model endowed with improved spatial resolution, derived from simultaneous EEG-fMRI, to target amygdala activity (termed amygdala electrical fingerprint (Amyg-EFP). Healthy individuals (n = 180) undergoing a stressful military training programme were randomly assigned to six Amyg-EFP-NF sessions or one of two controls (control-EEG-NF or NoNF), taking place at the military training base. The training results demonstrated specificity of NF learning to the targeted Amyg-EFP signal, which led to reduced alexithymia and faster emotional Stroop indicating better stress coping following Amyg-EFP-NF relative to controls. Neural target engagement was demonstrated in a follow-up fMRI-NF, showing greater amygdala blood-oxygen-level-dependent activity downregulation and amygdala-ventromedial prefrontal cortex functional connectivity following Amyg-EFP-NF relative to NoNF. Together, these results demonstrate limbic specificity and efficacy of Amyg-EFP-NF during a stressful period, pointing to a scalable nonpharmacological yet neuroscience-based training to prevent stress-induced psychopathology.
Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using functional near infrared spectroscopy (fNIRS) and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent’s facial expressions, in which action units (AUs) are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent’s responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.