Vacuum samples were collected from 1025 randomly selected urban Canadian homes to investigate bioaccessible Pb (Pb(S)) concentrations in settled house dust. Results indicate a polymodal frequency distribution, consisting of three lognormally distributed subpopulations defined as "urban background" (geomean 58 μg g(-1)), "elevated" (geomean 447 μg g(-1)), and "anomalous" (geomean 1730 μg g(-1)). Dust Pb(S) concentrations in 924 homes (90%) fall into the "urban background" category. The elevated and anomalous subpopulations predominantly consist of older homes located in central core areas of cities. The influence of house age is evidenced by a moderate correlation between house age and dust Pb(S) content (R(2) = 0.34; n = 1025; p < 0.01), but it is notable that more than 10% of homes in the elevated/anomalous category were built after 1980. Conversely, the benefit of home remediation is evidenced by the large number of homes (33%) in the background category that were built before 1960. The dominant dust Pb species determined using X-ray Absorption Spectroscopy were as follows: Pb carbonate, Pb hydroxyl carbonate, Pb sulfate, Pb chromate, Pb oxide, Pb citrate, Pb metal, Pb adsorbed to Fe- and Al-oxyhydroxides, and Pb adsorbed to humate. Pb bioaccessibility estimated from solid phase speciation predicts Pb bioaccessibility measured using a simulated gastric extraction (R(2) = 0.85; n = 12; p < 0.0001). The trend toward increased Pb bioaccessibility in the elevated and anomalous subpopulations (75% ± 18% and 81% ± 8%, respectively) compared to background (63% ± 18%) is explained by the higher proportion of bioaccessible compounds used as pigments in older paints (Pb carbonate and Pb hydroxyl carbonate). This population-based study provides a nationally representative urban baseline for applications in human health risk assessment and risk management.
This study examines factors affecting oral bioaccessibility of metals in household dust, in particular metal speciation, organic carbon content, and particle size, with the goal of addressing risk assessment information requirements. Investigation of copper (Cu) and zinc (Zn) speciation in two size fractions of dust (<36 µm and 80-150 µm) using synchrotron X-ray absorption spectroscopy (XAS) indicates that the two metals are bound to different components of the dust: Cu is predominately associated with the organic phase of the dust, while Zn is predominately associated with the mineral fraction. Total and bioaccessible Cu, nickel (Ni), and Zn were determined (on dry weight basis) in the <150 µm size fraction of a set of archived indoor dust samples (n = 63) and corresponding garden soil samples (n = 66) from the City of Ottawa, Canada. The median bioaccessible Cu content is 66 µg g −1 in dust compared to 5 µg g −1 in soil; the median bioaccessible Ni content is 16 µg g −1 in dust compared to 2 µg g −1 in soil; and the median bioaccessible Zn content is 410 µg g −1 in dust compared to 18 µg g −1 in soil. For the same data set, the median total Cu content is 152 µg g −1 in dust compared to 17 µg g −1 in soil; the median total Ni content is 41 µg g −1 in dust compared to 13 µg g −1 in soil; and the median total Zn content is 626 µg g −1 in dust compared to 84 µg g −1 in soil. Organic carbon is elevated in indoor dust (median 28%) compared to soil (median 5%), and is a key factor controlling metal partitioning and therefore bioaccessibility. The results show that house dust and soil have distinct geochemical signatures and should not be treated as identical media in exposure and risk assessments. Separate measurements of the indoor and outdoor environment are essential to improve the accuracy of residential risk assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.