Root systems play an essential role in ensuring plant productivity. Experiments conducted in controlled environments and simulation models suggest that root geometry and responses of root architecture to environmental factors should be studied as a priority. However, compared with aboveground plant organs, roots are not easily accessible by non-invasive analyses and field research is still based almost completely on manual, destructive methods. Contributing to reducing the gap between laboratory and field experiments, we present a novel phenotyping system (GROWSCREEN-Rhizo), which is capable of automatically imaging roots and shoots of plants grown in soil-filled rhizotrons (up to a volume of ~18 L) with a throughput of 60 rhizotrons per hour. Analysis of plants grown in this setup is restricted to a certain plant size (up to a shoot height of 80 cm and root-system depth of 90 cm). We performed validation experiments using six different species and for barley and maize, we studied the effect of moderate soil compaction, which is a relevant factor in the field. First, we found that the portion of root systems that is visible through the rhizotrons’ transparent plate is representative of the total root system. The percentage of visible roots decreases with increasing average root diameter of the plant species studied and depends, to some extent, on environmental conditions. Second, we could measure relatively minor changes in root-system architecture induced by a moderate increase in soil compaction. Taken together, these findings demonstrate the good potential of this methodology to characterise root geometry and temporal growth responses with relatively high spatial accuracy and resolution for both monocotyledonous and dicotyledonous species. Our prototype will allow the design of high-throughput screening methodologies simulating environmental scenarios that are relevant in the field and will support breeding efforts towards improved resource use efficiency and stability of crop yields.
As water often limits crop production, a more complete understanding of plant water capture and transport is necessary. Here, we developed MECHA, a mathematical model that computes the flow of water across the root at the scale of walls, membranes, and plasmodesmata of individual cells, and used it to test hypotheses related to root water transport in maize (Zea mays). The model uses detailed root anatomical descriptions and a minimal set of experimental cell properties, including the conductivity of plasma membranes, cell walls, and plasmodesmata, which yield quantitative and scale-consistent estimations of water pathways and root radial hydraulic conductivity (k r). MECHA revealed that the mainstream hydraulic theories derived independently at the cell and root segment scales are compatible only if osmotic potentials within the apoplastic domains are uniform. The results suggested that the convection-diffusion of apoplastic solutes explained most of the offset between estimated k r in pressure clamp and osmotic experiments, while the contribution of water-filled intercellular spaces was limited. Furthermore, sensitivity analyses quantified the relative impact of cortex and endodermis cell conductivity of plasma membranes on root k r and suggested that only the latter contributed substantially to k r due to the composite nature of water flow across roots. The explicit root hydraulic anatomy framework brings insights into contradictory interpretations of experiments from the literature and suggests experiments to efficiently address questions pertaining to root water relations. Its scale consistency opens avenues for cross-scale communication in the world of root hydraulics.
The development of non-invasive methods to dynamically study root-root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root-root interactions. By following the dynamics of root-root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy.
The impact of heterogeneous soil compaction in combination with nutrient availability on root system architecture and root growth dynamics has scarcely been investigated. We quantified changes of barley (Hordeum vulgare L.) root and shoot growth during the first 3 weeks of growth in a controlled-environment chamber. Vertically divided split-root rhizotrons were filled either uniformly with loose or compacted peat, or heterogeneously with loose peat in one compartment and compacted peat in the other. We investigated the following questions. (a) Can growth processes affected by soil compaction be mimicked in our system? (b) Do plants show compensatory growth effects when exposed to heterogeneous soil compaction? (c) Does localised fertiliser application affect root systems’ responses to compaction? We observed compensatory effects regarding root system architecture and root growth dynamics due to vertically heterogeneous soil compaction. Roots grew deeper and lateral roots emerged earlier in the loose compartment of the split-root treatment compared with uniform treatments. When fertiliser was applied only via the compacted compartment in the split-root treatment, more lateral roots were initiated in the compacted compartment and lateral root formation started a few days earlier than in the uniform treatments. Consequently, the first days after exposure to heterogeneous soil conditions are critical for the analysis of underlying physiological responses.
Plant–soil interactions can strongly influence root growth in plants. There is now increasing evidence that root–root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant–plant and plant–soil interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.