Summary
Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled Central Pattern Generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement.
We present an optogenetic illumination system capable of real-time light delivery with high spatial resolution to specified targets in freely moving Caenorhabditis elegans. A tracking microscope records the motion of an unrestrained worm expressing Channelrhodopsin-2 or Halorhodopsin/NpHR in specific cell types. Image processing software analyzes the worm’s position within each video frame, rapidly estimates the locations of targeted cells, and instructs a digital micromirror device to illuminate targeted cells with laser light of the appropriate wavelengths to stimulate or inhibit activity. Since each cell in an unrestrained worm is a rapidly moving target, our system operates at high speed (~50 frames per second) to provide high spatial resolution (~30 µm). To demonstrate the accuracy, flexibility, and utility of our system, we present optogenetic analyses of the worm motor circuit, egg-laying circuit, and mechanosensory circuits that were not possible with previous methods.
Voltage biased solid-state nanopores are used to detect and characterize individual single stranded DNA molecules of fixed micrometer length by operating a nanopore detector at pH values greater than approximately 11.6. The distribution of observed molecular event durations and blockade currents shows that a significant fraction of the events obey a rule of constant event charge deficit (ecd) indicating that they correspond to molecules translocating through the nanopore in a distribution of folded and unfolded configurations. A surprisingly large component is unfolded. The result is an important milestone in developing solid-state nanopores for single molecule sequencing applications.
Small animals like nematodes and insects analyze airborne chemical cues to infer the direction of favorable and noxious locations. In these animals, the study of navigational behavior evoked by airborne cues has been limited by the difficulty of precise stimulus control. We present a system that enables us to deliver gaseous stimuli in defined spatial and temporal patterns to freely moving small animals. We use this apparatus, in combination with machine vision algorithms, to assess and quantify navigational decision-making of Drosophila larvae in response to ethyl acetate (a volatile attractant) and carbon dioxide (a gaseous repellant).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.