Small animals like nematodes and insects analyze airborne chemical cues to infer the direction of favorable and noxious locations. In these animals, the study of navigational behavior evoked by airborne cues has been limited by the difficulty of precise stimulus control. We present a system that enables us to deliver gaseous stimuli in defined spatial and temporal patterns to freely moving small animals. We use this apparatus, in combination with machine vision algorithms, to assess and quantify navigational decision-making of Drosophila larvae in response to ethyl acetate (a volatile attractant) and carbon dioxide (a gaseous repellant).
The growth of large-area graphene on catalytic metal substrates is a topic of both fundamental and technological interest. We have developed an atmospheric pressure chemical vapor deposition (CVD) method that is potentially more cost-effective and compatible with industrial production than approaches based on synthesis under high vacuum. Surface morphology of the catalytic Cu substrate and the concentration of carbon feedstock gas were found to be crucial factors in determining the homogeneity and electronic transport properties of the final graphene film. The use of an electropolished metal surface and low methane concentration enabled the growth of graphene samples with single layer content exceeding 95%. Field effect transistors fabricated from CVD graphene made with the optimized process had room temperature hole mobilities that are a factor of 2−5 larger than those measured for samples grown on as-purchased Cu foil with larger methane concentration. A kinetic model is proposed to explain the observed dependence of graphene growth on catalyst surface roughness and carbon source concentration.
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior.DOI: http://dx.doi.org/10.7554/eLife.14859.001
Complex animal behaviors are built from dynamical relationships between sensory inputs, neuronal activity, and motor outputs in patterns with strategic value. Connecting these patterns illuminates how nervous systems compute behavior. Here, we study Drosophila larva navigation up temperature gradients toward preferred temperatures (positive thermotaxis). By tracking the movements of animals responding to fixed spatial temperature gradients or random temperature fluctuations, we calculate the sensitivity and dynamics of the conversion of thermosensory inputs into motor responses. We discover three thermosensory neurons in each dorsal organ ganglion (DOG) that are required for positive thermotaxis. Random optogenetic stimulation of the DOG thermosensory neurons evokes behavioral patterns that mimic the response to temperature variations. In vivo calcium and voltage imaging reveals that the DOG thermosensory neurons exhibit activity patterns with sensitivity and dynamics matched to the behavioral response. Temporal processing of temperature variations carried out by the DOG thermosensory neurons emerges in distinct motor responses during thermotaxis. N avigation toward environmental conditions that improve survival and fitness is of near-universal importance in motile biological organisms. Quantitative analysis of such animal behaviors to defined sensory inputs is a powerful approach to elucidate how behavior is encoded in underlying neurons and circuits. The advantage of studying navigation in small, optically transparent, genetically modifiable animals like Caenorhabditis elegans (1) or Drosophila larvae (2) is the opportunity to dissect sensory, neuronal, and behavioral dynamics in live animals by using optical neurophysiology and optogenetics throughout the nervous system.The Drosophila melanogaster larva navigates gradients of many sensory cues, including light, temperature, odors, and tastes, but with fewer neurons in its sensory periphery and brain than the adult. Moreover, the simpler body plan and crawling movements of the larva facilitate the precise quantification of behavioral dynamics. Poikilotherms like C. elegans or Drosophila use sensitive thermosensory mechanisms to navigate moderate temperature ranges, thereby enabling them to use their environments to regulate their own body temperatures (3, 4). Here, we study sensory and behavioral dynamics during positive thermotaxis (i.e., cool avoidance) by the Drosophila larva. Tracking the movements of Drosophila exploring temperature, olfactory, or gaseous gradients has shown that their navigation is generated by a sequence of two alternating motor programs: runs involving peristaltic forward movement that are interrupted by turns involving probing side-to-side head sweeps until the initiation of a new run (5-8). Larvae negotiating temperature gradients stochastically transition between runs and turns by strategies that cause runs pointed in favorable directions to be more frequent and longer than runs pointed in unfavorable directions. These transitions b...
Highlights d All ORNs share a common dose-response function with variable sensitivity across odors d Sensitivities across odorants and ORNs follow a power-law distribution d Correlation in sensitivities corresponds to a geometric molecular property d ORN-odorant responses share similar temporal filters
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.