The growth of large-area graphene on catalytic metal substrates is a topic of both fundamental and technological interest. We have developed an atmospheric pressure chemical vapor deposition (CVD) method that is potentially more cost-effective and compatible with industrial production than approaches based on synthesis under high vacuum. Surface morphology of the catalytic Cu substrate and the concentration of carbon feedstock gas were found to be crucial factors in determining the homogeneity and electronic transport properties of the final graphene film. The use of an electropolished metal surface and low methane concentration enabled the growth of graphene samples with single layer content exceeding 95%. Field effect transistors fabricated from CVD graphene made with the optimized process had room temperature hole mobilities that are a factor of 2−5 larger than those measured for samples grown on as-purchased Cu foil with larger methane concentration. A kinetic model is proposed to explain the observed dependence of graphene growth on catalyst surface roughness and carbon source concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.