Graphene is a two-dimensional material with extremely favorable chemical sensor properties. Conventional nanolithography typically leaves a resist residue on the graphene surface, whose impact on the sensor characteristics has not yet been determined. Here we show that the contamination layer chemically dopes the graphene, enhances carrier scattering, and acts as an absorbent layer that concentrates analyte molecules at the graphene surface, thereby enhancing the sensor response. We demonstrate a cleaning process that verifiably removes the contamination on the device structure and allows the intrinsic chemical responses of the graphene monolayer to be measured. These intrinsic responses are surprisingly small, even upon exposure to strong analytes such as ammonia vapor.
Subcentimeter single-crystalline graphene grains, with diameter up to 5.9 mm, have been successfully synthesized by tuning the nucleation density during atmospheric pressure chemical vapor deposition. Morphology studies show the existence of a single large nanoparticle (>~20 nm in diameter) at the geometric center of those graphene grains. Similar size particles were produced by slightly oxidizing the copper surface to obtain oxide nanoparticles in Ar-only environments, followed by reduction into large copper nanoparticles under H2/Ar environment, and are thus explained to be the main constituent nuclei for graphene growth. On this basis, we were able to control the nanoparticle density by adjusting the degree of oxidation and hydrogen annealing duration, thereby controlling nucleation density and consequently controlling graphene grain sizes. In addition, we found that hydrogen plays dual roles on copper morphology during the whole growth process, that is, removing surface irregularities and, at the same time, etching the copper surface to produce small nanoparticles that have only limited effect on nucleation for graphene growth. Our reported approach provides a highly efficient method for production of graphene film with long-range electronic connectivity and structure coherence.
The growth of large-area graphene on catalytic metal substrates is a topic of both fundamental and technological interest. We have developed an atmospheric pressure chemical vapor deposition (CVD) method that is potentially more cost-effective and compatible with industrial production than approaches based on synthesis under high vacuum. Surface morphology of the catalytic Cu substrate and the concentration of carbon feedstock gas were found to be crucial factors in determining the homogeneity and electronic transport properties of the final graphene film. The use of an electropolished metal surface and low methane concentration enabled the growth of graphene samples with single layer content exceeding 95%. Field effect transistors fabricated from CVD graphene made with the optimized process had room temperature hole mobilities that are a factor of 2−5 larger than those measured for samples grown on as-purchased Cu foil with larger methane concentration. A kinetic model is proposed to explain the observed dependence of graphene growth on catalyst surface roughness and carbon source concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.