IntroductionOrthotopic liver transplantation (OLT) has emerged as the mainstay of treatment for end-stage liver disease. In an attempt to improve the availability of donor allografts and reduce waiting list mortality, graft acceptance criteria were extended increasingly over the decades. The use of extended criteria donor (ECD) allografts is associated with a higher incidence of primary graft non-function and/or delayed graft function. As such, several strategies have been developed aiming at reconditioning poor quality ECD liver allografts. Hypothermic oxygenated machine perfusion (HOPE) has been successfully tested in preclinical experiments and in few clinical series of donation after cardiac death OLT.Methods and analysisHOPE ECD-DBD is an investigator-initiated, open-label, phase-II, prospective multicentre randomised controlled trial on the effects of HOPE on ECD allografts in donation after brain death (DBD) OLT. Human whole organ liver grafts will be submitted to 1–2 hours of HOPE (n=23) via the portal vein before implantation and are going to be compared with a control group (n=23) of patients transplanted after conventional cold storage. Primary (peak and Δ peak alanine aminotransferase within 7 days) and secondary (aspartate aminotransferase, bilirubin and international normalised ratio, postoperative complications, early allograft dysfunction, duration of hospital and intensive care unit stay, 1-year patient and graft survival) endpoints will be analysed within a 12-month follow-up. Extent of ischaemia–reperfusion (I/R) injury will be assessed using liver tissue, perfusate, bile and serum samples taken during the perioperative phase of OLT.Ethics and disseminationThe study was approved by the institutional review board of the RWTH Aachen University, Aachen, Germany (EK 049/17). The current paper represent the pre-results phase. First results are expected in 2018.Trial registration numberNCT03124641.
Middle cerebral artery occlusion (MCAO) models have become well established as the most suitable way to simulate stroke in experimental studies. The high variability in the size of the resulting infarct due to filament composition, rodent strain and vessel anatomy makes the setup of such models very complex. Beside controllable variables of homeostasis, the choice of anesthetics and the grade of ischemia and reperfusion played a major role for extent of neurological injury. Transient MCAO was induced during either isoflurane or ketamine/xylazine (ket/xyl) anesthesia with simultaneously measurement of cerebral blood flow (CBF) in 60 male Wistar rats (380-420 g). Neurological injury was quantified after 24 h. Isoflurane compared with ket/xyl improved mortality 24 h after MCAO (10 vs. 50 %, p = 0.037) and predominantly led to striatal infarcts (78 vs. 18 %, p = 0.009) without involvement of the neocortex and medial caudoputamen. Independent of anesthesia type, cortical infarcts could be predicted with a sensitivity of 67 % and a specificity of 100 % if CBF did not exceed 35 % of the baseline value during ischemia. In all other cases, cortical infarcts developed if the reperfusion values remained below 50 %. Hyperemia during reperfusion significantly increased infarct and edema volumes. The cause of frequent striatal infarcts after isoflurane anesthesia might be attributed to an improved CBF during ischemia (46 ± 15 % vs. 35 ± 19 %, p = 0.04). S-100β release, edema volume and upregulation of IL-6 and IL-1β expression were impeded by isoflurane. Thus, anesthetic management as well as the grade of ischemia and reperfusion after transient MCAO demonstrated important effects on neurological injury.
BackgroundWe investigated the neuroprotective properties of levosimendan, a novel inodilator, in an in vitro model of traumatic brain injury.MethodsOrganotypic hippocampal brain slices from mouse pups were subjected to a focal mechanical trauma. Slices were treated after the injury with three different concentrations of levosimendan (0.001, 0.01 and 0.1 μM) and compared to vehicle-treated slices. After 72 hrs, the trauma was quantified using propidium iodide to mark the injured cells.ResultsA significant dose-dependent reduction of both total and secondary tissue injury was observed in cells treated with either 0.01 or 0.1 μM levosimendan compared to vehicle-treated slices.ConclusionLevosimendan represents a promising new pharmacological tool for neuroprotection after brain injury and warrants further investigation in an in vivo model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.