This paper reports a computational analysis on the effect of sister hole control on film cooling from short holes. The proposed method includes surrounding a primary injection hole by two or four smaller sister holes to actively maintain flow adhesion along the surface of the blade. A numerical study using the realizable k-ε turbulence model led to the determination that the use of sister holes significantly improves adiabatic effectiveness by countering the primary vortical flow structure. Research was carried out to determine the optimum hole configuration, arriving at the conclusion that placing sister holes slightly downstream of the primary injection hole improves the near-hole effectiveness, while placing sister holes slightly upstream of the primary hole improves downstream effectiveness. Similar results were found in evaluating both long and short hole geometries with a significantly less coherent flow field arising from the short hole. However, on the whole, the sister hole approach to film cooling was found to offer viable improvements over standard cooling regimes.
Film cooling has been the primary focus of turbine blade cooling research for the past half century. However, as engines become more powerful, more effective non-traditional means of cooling become necessary. The current study branches out into a new scheme for film cooling; sister holes. The geometry of the current work makes use of three cylindrical holes inclined at 35° to the horizontal: one primary injectant hole bound by two sister holes. Numerical simulations were run with blowing ratios varying from M = 0.2 to M = 1.5, using the realizable k-ε turbulence model with near-wall modeling. The results were analyzed for both adiabatic thermal effectiveness as well as vortex production due to flow mixing. In general, sister holes offer significant advantages in thermal protection over their single hole counterparts both laterally and along the centre-line, particularly in regions close to the hole. Simulations showed that the laterally averaged adiabatic thermal effectiveness increased by a factor of 1.35 for M = 0.2 up to a factor of 1.62 for M = 1.5. Similarly, the centre-line effectiveness increased by a factor of 1.22 at M = 0.2 up to a factor of 1.68 at M = 1.5. These benefits are heavily weighted by the near-hole region; however, increases are evident throughout the computational domain. This sister hole technique offers significant advantages with minimal penalties, making it a valuable candidate for future blade cooling applications.
This paper presents an investigation on the effect of sister holes on film cooling. The proposed technique surrounds a primary injection hole by two or four smaller sister holes to actively maintain flow adhesion along the surface of the blade. A numerical evaluation using the realizable k-ε turbulence model led to the determination that the use of sister holes significantly improves adiabatic effectiveness by countering the primary vortical flow structure. Research was performed to determine the optimal hole configuration, arriving at the conclusion that placing sister holes slightly downstream of the primary injection hole improves the near-hole effectiveness, while placing sister holes slightly upstream of the primary hole improves downstream effectiveness. On the whole, the sister hole approach to film cooling was found to offer viable improvements over standard cooling regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.