Pareiasaurs were globally distributed, abundant, herbivorous parareptiles of the Middle to Late Permian, with the basal-most members found in the Middle Permian of South Africa. These basal taxa were particularly abundant and went extinct at the end of the Gaudalupian (Capitanian) at the top of the Tapinocephalus Assemblage Zone. Currently four taxa are recognized in this group: Bradysaurus seeleyi, B. baini, Nochelesaurus alexanderi and Embrithosaurus schwarzi, but they are all poorly understood. We here present the first detailed cranial description and updated diagnosis for Embrithosaurus schwarzi. No cranial autapomorphies were identified. However, Embrithosaurus schwarzi is a distinct taxon in this group, based on its unique dentition and using a combination of cranial features. It has nine marginal cusps on all maxillary and mandibular teeth, and wider maxillary teeth than in the co-occurring taxa, due to the marginal cusps being arranged more regularly around the crown, and the apex of the crown lacking the long, central, three-cusped trident. Our updated phylogenetic analysis recovers the four Middle Permian South African taxa as a monophyletic group for the first time, which we call Bradysauria, comprising a clade including Embrithosaurus, Bradysaurus baini and a polytomy including Nochelesaurus and Bradysaurus seeleyi.
The third eye (pineal eye), an organ responsible for regulating exposure to sunlight in extant ectotherms, is located in an opening on the dorsal surface of the skull, the parietal foramen. The parietal foramen is absent in extant mammals but often observed in basal therapsids, the stem-group to true mammals. Here, we report the absence of the parietal foramen in a specimen of Cynosaurus suppostus, a Late Permian cynodont from South Africa (SA). Comparison with Procynosuchus delaharpeae, a contemporaneous non-mammalian cynodont from SA, demonstrates that the absence of this foramen is an abnormal condition for such a basal species. Because seasonality was marked during the Late Permian in SA, it is proposed that the third eye was functionally redundant in Cynosaurus, possibly due to the acquisition of better thermoregulation or the evolution of specialized cells in the lateral eyes to compensate for the role of the third eye.
Pareiasaurs were globally distributed, abundant, herbivorous parareptiles with the basal-most members found only in the mid-Permian of South Africa. These basal forms form a monophyletic group and were locally abundant and became extinct at the top of the Tapinocephalus Assemblage Zone at the end of the Guadalupian. Four species of basal pareiasaurs are currently recognised: Bradysaurus baini, B. seeleyi, Embrithosaurus schwarzi and Nochelesaurus alexanderi, but they are all poorly understood and there remains historic uncertainty as to their validity. In this paper, our second contribution designed to improve understanding of the basal group, we present the first detailed cranial description and updated diagnosis for Nochelesaurus alexanderi and demonstrate that it is a distinct taxon based on one cranial autapomorphy, a large transversely wide postparietal, and a combination of cranial characters. Within the local group of mid-Permian pareiasaurs, we recognise new dental features of Nochelesaurus alexanderi: non-symmetrical marginal cusp arrangements on upper and lower teeth resulting from an extra basal mesial cusp; an incipient horizontal cingulum on lower jaw teeth, sometimes with one or two tiny medial cingular cusps; and up to ten marginal cusps. Our study demonstrates that tooth morphology and orientation, cranial ornamentation, morphology of the cheek bosses, shape of the postfrontal and postparietal, and morphology of the distal paroccipital process of the opisthotic are the most useful to identify South African mid-Permian pareiasaurs.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Pareiasaurs were relatively abundant, globally distributed, herbivorous parareptiles of the mid to late Permian. The basal-most forms, all members of the Bradysauria, are restricted to the Guadalupian (mid-Permian) of South Africa and went extinct in the late Capitanian near the top of the Tapinocephalus Assemblage Zone. Currently four species are recognised in 2 this group: Bradysaurus seeleyi, B. baini, Embrithosaurus schwarzi and Nochelesaurus alexanderi. Those taxa have historically been poorly defined and based on a limited number of specimens, leaving the taxonomic diversity of the group open to doubt and limiting their utility in biostratigraphy. Here we present our fourth and final contribution designed to improve the understanding of this group of pareiasaurs by providing a taxonomic and phylogenetic review, updated stratigraphic ranges and updated diagnoses for each taxon of the Bradysauria. Bradysaurus seeleyi is synonymised with Bradysaurus baini, resulting in three valid mid-Permian pareiasaur taxa: Bradysaurus baini, Embrithosaurus schwarzi and Nochelesaurus alexanderi. Our cladistic analysis of cranial and postcranial characters supports the monophyly of Bradysauria with five synapomorphies. Embrithosaurus schwarzi is recovered as the sister taxon to a clade containing Bradysaurus baini and Nochelesaurus alexanderi. By identifying 157 pareiasaur specimens in fossil collections we show that the Bradysauria are stratigraphically restricted to the Abrahamskraal Formation of the Beaufort Group and suggest a staggered appearance. Bradysaurus baini is first to appear, followed by Nochelesaurus alexanderi, and lastly by Embrithosaurus schwarzi. All three taxa perished during the Capitanian mass extinction, and have their highest occurrences near the top of the Abrahamskraal Formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.