The International Pharmaco-EEG Society (IPEG) presents updated guidelines summarising the requirements for the recording and computerised evaluation of pharmaco-EEG data in man. Since the publication of the first pharmaco-EEG guidelines in 1982, technical and data processing methods have advanced steadily, thus enhancing data quality and expanding the palette of tools available to investigate the action of drugs on the central nervous system (CNS), determine the pharmacokinetic and pharmacodynamic properties of novel therapeutics and evaluate the CNS penetration or toxicity of compounds. However, a review of the literature reveals inconsistent operating procedures from one study to another. While this fact does not invalidate results per se, the lack of standardisation constitutes a regrettable shortcoming, especially in the context of drug development programmes. Moreover, this shortcoming hampers reliable comparisons between outcomes of studies from different laboratories and hence also prevents pooling of data which is a requirement for sufficiently powering the validation of novel analytical algorithms and EEG-based biomarkers. The present updated guidelines reflect the consensus of a global panel of EEG experts and are intended to assist investigators using pharmaco-EEG in clinical research, by providing clear and concise recommendations and thereby enabling standardisation of methodology and facilitating comparability of data across laboratories.
There is evidence for two types of sleep spindle activity, one with a frequency of about 12 cycles/s (cps) and the other of about 14 cps. Visual examination indicates that both spindle types occur independently, whereby the 12-cps spindles are more pronounced in the frontal and the 14-cps spindles in the parietal region. The purpose of this paper is to provide more information about the exact topography of these patterns. First the occurrence of distinct signals in anterior and posterior brain regions was verified using pattern recognition techniques based on matched filtering. Thus the existence of two distinct sources of activity located in the frontal and parietal region of the brain, respectively, was demonstrated using EEG frequency mapping. Evaluation of sleep recordings showed high stability both in the frequency and location of the presumed spindle generators across sleep. Pharmacological effects of lormetazepam and zopiclone on both spindle types were investigated. Both substances enhanced the sleep spindle activity recorded from the frontal and parietal electrodes, but this increase was more pronounced in the parietal brain region.
SP can be modeled as a continuous variable, based on the multiplicative interaction of 2 basic sleep drives. The model predictions are in agreement with known variations of SP across 24 hours.
The International Pharmaco-EEG Society (IPEG) presents guidelines summarising the requirements for the recording and computerised evaluation of pharmaco-sleep data in man. Over the past years, technical and data-processing methods have advanced steadily, thus enhancing data quality and expanding the palette of sleep assessment tools that can be used to investigate the activity of drugs on the central nervous system (CNS), determine the time course of effects and pharmacodynamic properties of novel therapeutics, hence enabling the study of the pharmacokinetic/pharmacodynamic relationship, and evaluate the CNS penetration or toxicity of compounds. However, despite the presence of robust guidelines on the scoring of polysomnography -recordings, a review of the literature reveals inconsistent -aspects in the operating procedures from one study to another. While this fact does not invalidate results, the lack of standardisation constitutes a regrettable shortcoming, especially in the context of drug development programmes. The present guidelines are intended to assist investigators, who are using pharmaco-sleep measures in clinical research, in an effort to provide clear and concise recommendations and thereby to standardise methodology and facilitate comparability of data across laboratories.
SUMMARYThe aim of the present study was to assess the diurnal variation of sleep propensity by evaluating the temporal distribution of sleep onset latency (SOL) and REM-and slow-wave sleep (SWS) parameters in systematically scheduled daytime naps for 12 young males. To reduce the effect of prior SWS on subsequent REM sleep, a doublenap technique was used, i.e. two adjacent naps A and B, which were separated by a 10-min break. Nap duration was adjusted in such a way that nap A allowed 30 min of sleep and nap B one complete NREM-REM cycle. EEG slow wave activity (SWA, power density from 0.5-4 Hz) was estimated from nap A and REM sleep parameters from nap B. The time span between 08.00 hours and 24.00 hours was covered by nine double-naps at 2 h intervals. The order of the nap sessions was systematically varied within and across subjects. For each subject, the time between successive double-nap recordings was at least three days. SOL was shortest in the time interval 12.00 hours to 16.00 hours and significantly longer between 20.00 hours and 24.00 hours. REM sleep duration and the percentage of sleep onset REM episodes decreased continuously from 08.00 hours to the interval 18.00-20.00 hours and increased thereafter, with a time course inversely related to the one of body temperature, which was also measured continuously. SWA showed a steady, threefold increase from 08.00 hours to 24.00 hours. The study offers new data on the diurnal variation of sleep propensity which seems to be a composite function of the drives for SWS and REM sleep. nap sleep, REM latency, sleep latency, sleep propensity, slow-wave sleep
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.