SUMMARYThe GDP-D-mannose 3,5-epimerase (GME, EC 5.1.3.18), which converts GDP-D-mannose to GDP-L-galactose, is generally considered to be a central enzyme of the major ascorbate biosynthesis pathway in higher plants, but experimental evidence for its role in planta is lacking. Using transgenic tomato lines that were RNAi-silenced for GME, we confirmed that GME does indeed play a key role in the regulation of ascorbate biosynthesis in plants. In addition, the transgenic tomato lines exhibited growth defects affecting both cell division and cell expansion. A further remarkable feature of the transgenic plants was their fragility and loss of fruit firmness. Analysis of the cell-wall composition of leaves and developing fruit revealed that the cell-wall monosaccharide content was altered in the transgenic lines, especially those directly linked to GME activity, such as mannose and galactose. In agreement with this, immunocytochemical analyses showed an increase of mannan labelling in stem and fruit walls and of rhamnogalacturonan labelling in the stem alone. The results of MALDI-TOF fingerprinting of mannanase cleavage products of the cell wall suggested synthesis of specific mannan structures with modified degrees of substitution by acetate in the transgenic lines. When considered together, these findings indicate an intimate linkage between ascorbate and non-cellulosic cell-wall polysaccharide biosynthesis in plants, a fact that helps to explain the common factors in seemingly unrelated traits such as fruit firmness and ascorbate content.
Fucoidans are matrix polysaccharides from marine brown algae, consisting of an α-l-fucose backbone substituted by sulfate-ester groups and masked with ramifications containing other monosaccharide residues. In spite of their interest as biologically active compounds in a number of homologous and heterologous systems, no convenient sources with fucanase activity are available yet for the degradation of the fucalean algae. We here report on the isolation, characterization, and culture conditions of a bacterial strain capable of degrading various brown algal fucoidans. This bacterium, a member of the family Flavobacteriaceae, was shown to secrete fucoidan endo-hydrolase activity. An extracellular enzyme preparation was used to degrade the fucoidan from the brown alga Pelvetia canaliculata. End products included a tetrasaccharide and a hexasaccharide made of the repetition of disaccharidic units consisting of α-1→3-l-fucopyranose-2-sulfate-α-1→4-l-fucopyranose-2,3-disulfate, with the 3-linked residues at the nonreducing end.
Mutation in the Arabidopsis thaliana QUASIMODO 1 gene (QUA1), which encodes a putative glycosyltransferase, reduces cell wall pectin content and cell adhesion. Suspension-cultured calli were generated from roots of wild-type (wt) and qua1-1 A. thaliana plants. The altered cell adhesion phenotype of the qua1-1 plant was also found with its suspension-cultured calli. Cell walls of both wt and qua1-1 calli were analysed by chemical, enzymatic and immunohistochemical techniques in order to assess the role of pectic polysaccharides in the mutant phenotype. Compared with the wt, qua1-1 calli cell walls contained more arabinose (23.6 versus 21.6 mol%), rhamnose (3.1 versus 2.7 mol%), and fucose (1.4 versus 1.2 mol%) and less uronic acid (24.2 versus 27.6 mol%), and they were less methyl-esterified (DM: 22.9% versus 30.3%). When sequential pectin extraction of calli cell walls was performed, qua1-1 water-soluble and chelator-soluble extracts contained more arabinose and less uronic acid than wt. Water-soluble pectins were less methyl-esterified in qua1-1 than in wt. Chelator-soluble pectins were more acetyl-esterified in qua1-1. Differences in the cell wall chemistry of wt and mutant calli were supported by a reduction in JIM7 labelling (methyl-esterified homogalacturonan) of the whole wall in small cells and particularly by a reduced labelling with 2F4 (calcium-associated homogalacturonan) in the middle lamella at tricellular junctions of large qua1-1 cells. Differences in the oligosaccharide profile obtained after endopolygalacturonase degradation of alkali extracts from qua1-1 and wt calli indicated variations in the structure of covalently bonded homogalacturonan. About 29% more extracellular polymers rich in pectins were recovered from the calli culture medium of qua1-1 compared with wt. These results show that perturbation of QUASIMODO 1-1 gene expression in calli resulted in alterations of homogalacturonan content and cell wall location. The consequences of these structural variations are discussed with regard to plant cell adhesion.
Apple pieces were vacuum-impregnated with either a pectin methylesterase (PME) and calcium solution or with water prior to pasteurization. Pasteurized apple pieces impregnated with PME and calcium showed a significantly higher firmness. Moreover, solid state (13)C NMR spectroscopy of apple cell wall residues revealed an increase of their molecular rigidity. Exogenous PME addition involved a decrease from 82% to 45% of apple pectin degree of methyl-esterification. Microscopic observations of apple slices immunolabelled with antibodies specific for pectins showed that (i) demethyl-esterification was more intense in the cell wall region lining intercellular spaces (demonstrating a key role for these intercellular channels in the enzyme penetration in the tissue during vacuum-infusion) and that (ii) the number of calcium-dimerized deesterified homogalacturonan chains increased. The results corroborate the hypothesis that vacuum-impregnated PME action liberates free carboxyl groups along pectin chains that could interact with calcium, increasing the rigidity of pectins and finally the mechanical rigidity of apple tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.