Recent advances in GPU technology have produced a shift in focus for real-time rendering applications, whereby improvements in image quality
Shadows, particularly soft shadows, play an important role in the visual perception of a scene by providing visual cues about the shape and position of objects. Several recent algorithms produce soft shadows at interactive rates, but they do not scale well with the number of polygons in the scene or only compute the outer penumbra. In this paper, we present a new algorithm for computing interactive soft shadows on the GPU. Our new approach provides both innerand outer-penumbra, and has a very small computational cost, giving interactive frame-rates for models with hundreds of thousands of polygons.Our technique is based on a sampled image of the occluders, as in shadow map techniques. These shadow samples are used in a novel manner, computing their effect on a second projective shadow texture using fragment programs. In essence, the fraction of the light source area hidden by each sample is accumulated at each texel position of this Soft Shadow Map. We include an extensive study of the approximations caused by our algorithm, as well as its computational costs. Key-words: Cartes d'ombres douces : calcul efficace de la visibilité de la source lumineuseRésumé : Les ombres, et en particulier les ombres douces, jouent un rôle important dans la perception d'une scène 3D. Elles fournissent des informations importantes sur la forme et la position des objets. De nombreuses recherches récentes ont montré comment produire des ombres douces en temps interactif, mais soit ces méthodes sont limitées soit dans les scènes qu'elles peuvent traiter, soit dans la qualité visuelle des résultats. Dans ce rapport, nous présentons un nouvel algorithme pour le calcul en temps-réel des ombres douces sur le GPU. Notre approche donne à la fois les pénombres intérieures et extérieures, consomme très peu de temps de calcul, ce qui lui permet des temps de rendu compatibles avec le temps réel pour des modèles de plusieurs centaines de milliers de polygones.Notre technique est basée sur une carte de profondeur des obstacles, comme pour la technique « shadow map ». Les pixels de cette carte de profondeur sont utilisés d'une façon nouvelle. Nous calculons leur contribution à une texture d'ombre douce en utilisant des fragment programs. La proportion de la source lumineuse qui est masquée par chaque échantillon est calculée, puis accumulée dans cette texture, la Soft Shadow Map. Nous présentons également une analyse détaillée des approximations introduites par notre algorithme, ainsi que des ses coûts de calcul.
Shape from silhouette methods are extensively used to model dynamic and non-rigid objects using binary foreground-background images. Since the problem of reconstructing shapes from silhouettes is ambiguous, a number of solutions exist and several approaches only consider the one with a maximal volume, called the visual hull. However, the visual hull is not always a good approximation of shapes, in particular when observing smooth surfaces with few cameras. In this paper, we consider instead a class of solutions to the silhouette reconstruction problem that we call visual shapes. Such a class includes the visual hull, but also better approximations of the observed shapes which can take into account local assumptions such as smoothness, among others. Our contributions with respect to existing works is first to identify silhouette consistent shapes different from the visual hull, and second to give a practical way to estimate such shapes in real time. Experiments on various sets of data including human body silhouettes are shown to illustrate the principle and the interests of visual shapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.